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Experimental Observations

Consider a pair of parallel wires carrying steady
currents I1 and I2.

Last lecture we found that steady currents imply zero
net charge distribution. Therefore, there should be no
electrostatic force between these current carrying wires.

But experimentally we do observe a force which tends
to be attractive if the currents are in the same direction
and repulsive if the currents are in opposite direction.

This new force is in fact an electrostatic force if we
consider the problem from a relativistic point of view!

Even though the net charge on each current carrying
conductor is zero in a static reference frame, in a
moving reference frame there is net charge density and
hence force.
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Magnetic Force

Through careful observations, Ampère demonstrated
that this force can be computed using the following
equation

dFm =
µ0

4π

I2dℓ2 × I1dℓ1 × R̂

R2

The resemblance to the Coulomb force equation is
notable. Both forces fall like 1/R2.

For steady currents, ∇ · J = 0 implies that the currents
must flow in loops. Thus we can calculate the force
between two loops as follows

Fm =

∮

C1

∮

C2

µ0

4π

I2dℓ2 × I1dℓ1 × R̂

R2
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Magnetic Field

Just as in the case of electric forces, the concept of
“action at a distance” is disturbing and counterintuitive.
Thus we prefer to think of the current in loop C1

generating a “field” and then we say that this field
interacts with the current in loop C2 to generate a force.

Just reordering the magnetic force equation gives

Fm =

∮

C2

I2dℓ2 ×
µ0

4π

∮

C1

I1dℓ1 × R̂

R2

︸ ︷︷ ︸

B

Here loop 2 is the source and loop one is the field point.

The unit of B is the tesla (T), where 1T = 104G, in terms
of the CGS units of gauss (G).
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Units of Magnetic Field

The tesla (T) and gauss (G) are derived units.

Since F ∝ I2µ, the units of µ are simply N · A−2. This is
more commonly known as H · m−1.

The units of the magnetic field is therefore

[B] = [µ]A · m · m−2 = H · A · m−2

Not that the units of D are C · m−2, which can be written
as F · V · m−2

From circuit theory we know that voltage is proportional
to ωLI, so LI has units of V

ω
. So the unit of [B] is

V · s · m−2

For reference, the magnetic field of the earth is only
.5G, so 1T is a very large field
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Direction of Magnetic Force

Due to the vector cross product, the direction of the
force of the magnetic field is perpendicular to the
direction of motion and the magnetic field

Use the right-hand rule to figure out the direction of Fm

in any given situation.
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E and B Duality

For a point charge dq, the electric force is given by

Fe = qE

The magnetic force for a point charge in a current loop,
we have

Fm = Idℓ × B = qNdℓv × B

The equations for E and B are also similar when we
consider an arbitrary current density J and charge
density ρ

E =
1

4πǫ

∫

V

ρ(r′)R

R2
dV ′

B =
1

4πµ−1

∫

V

J(r′) × R̂

R2
dV ′
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Magnetic Charge (I)

We may now compare the magnetic field to the electric
field and look for similarity and differences.

In this class we shall not discuss the relativistic
viewpoint that explains the link between electrostatics
and the magnetic field. Instead, we shall assume that
the magnetic field is an entity of its own.

Apparently, the source of magnetic field is moving
charges (currents) whereas the source of electric fields
is charges. But what about magnetic charges? Is there
any reason to believe that nature should be asymmetric
and give us electrical charge and not magnetic charge?

University of California, Berkeley EECS 117 Lecture 14 – p. 8/20



Magnetic Charge (II)

If magnetic charge existed, then the argument for
Gauss’ law would apply

∮

S

B · dS = Qm

Where Qm is the amount of magnetic charge inside the
volume V bounded by surface S.

But no one has ever observed any magnetic charge!

So for all practical purposes, we can assume that
Qm ≡ 0 and so Gauss’ law applied to magnetic fields
yields

∮

S

B · dS = 0
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Divergence of B

By the divergence theorem, locally this relation
translates into

∮

S

B · dS =

∫

V

∇ · BdV = 0

Since this is true for any surface S, the integrand must
be identically zero

∇ · B = 0

A vector field with zero divergence is known as a
solenoidal field

We already encountered such a field since ∇ · J = 0.
Such a field does not have any sources and thus always
curls back onto itself. B fields are thus always loops.
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Divergence of Curl

Let’s calculate the divergence of the curl of an arbitrary
vector field A, ∇ · ∇ × A

Let’s compute the volume of the above quantity and
apply the divergence theorem

∫

V

∇ · ∇ × AdV =

∮

S

∇× A · dS

To compute the surface integral, consider a new surface
S′ with a hole in it. The surface integral of ∇× A can be
written as the line integral using Stoke’s Theorem

∫

S′

∇× A · dS =

∮

C

A · dℓ
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Divergence of Curl

Where C is the perimeter of the hole. As we shrink this
hole to a point, the right hand side goes to zero and the
surface integral turns into the closed surface integral.
Thus ∫

V

∇ · ∇ × AdV =

∮

S

∇× A · dS = 0

Since this is true for any volume V , it must be that

∇ · ∇ × A = 0

Thus a solenoidal vector can always be written as the
curl of another vector. Thus the magnetic field B can be
written as

B = ∇× A
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Ampère’s Law

One of the fundamental relations for the magnetic field
is Amère’s law. It is analogous to Gauss’ law.

We can derive it by taking the curl of the magnetic field

∇× B = ∇×
1

4πµ−1

∫

V

J(r′) × R̂

R2
dV

′

After some painful manipulations (see Appendix B), this
can be simplified to Ampère’s famous law

∇× B = µJ

Now apply Stoke’s Theorem
∫

S

∇× B · dS =

∮

C

B · dℓ =

∫

S

µJ · dS = µI
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Application of Ampère’s Law

Ampère’s Law is very handy in situations involving
cylindrical symmetry. This is analogous to applying
Gauss’ law to problems with spherical symmetry

For example, consider the magnetic field due to a long
wire. The field should have no r or z dependence (by
symmetry) so the integral of B over a circle enclosing
the wire is simply a constant times the perimeter

∮

C

B · dℓ = 2πrBr = µI

So the magnetic field drops like 1/r

B(r) =
µI

2πr
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Magnetic Vector Potential

Earlier we showed that we can also define a vector A

such that B = ∇× A. Since ∇× B = µJ

∇×∇× A = µJ

We can apply the vector identity for ∇×∇× A

∇×∇× A = ∇ (∇ · A) −∇2
A

Since the divergence of A is arbitrary, let’s choose the
most convenient value. In magnetostatics that is
∇ · A = 0

Then we have
∇2

A = −µJ

We have met this equation before!
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Equations for Potential

The vector Laplacian can be written as three scalar
Laplacian equations (using rectangular coordinates).
For instance, the x-component is given by

∇2Ax = −µJx

By analogy with the scalar potential, therefore, the
solution is given by

Ax =
µ

4π

∫

V

Jx(r′)dV ′

|r − r′|

And in general, the total vector potential is given by

A =
µ

4π

∫

V

J(r′)dV ′

|r − r′|
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Why use Vector Potential?

The vector potential A is easier to calculate than B

since each component is a simple scalar calculation.

Also, the direction of A is easy to determine since it
follows J

At this point the vector potential seems like a
mathematical creation. It does not seem to have
physical relevance.

This is compounded by the fact that ∇ · A is arbitrary!

Later on, we’ll see that A has a lot of physical relevance
and in some ways it’s more fundamental than the vector
B
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From Vector A to B

Now that we have an equation for A, we can verify that
it is indeed consistent with the experimentally observed
equation for B

∇× A = ∇×
µ

4π

∫

V

J(r′)dV
′

|r − r′|

Interchanging the order of integration and differentiation

∇× A =
µ

4π

∫

V

∇×
J(r′)

|r − r′|
dV ′

We now need some fancy footwork to go further.
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Yet Another Vector Identify

It’s relatively easy to show that for a scalar function φ
times a vector field F

∇× φF = ∇φ × F + φ∇× F

Applying this to our case note that ∇ operates on the
coordinates r whereas J(r′) is a function of the primed
coordinates, and hence a constant

∇×
J(r′)

|r − r′|
= ∇

1

|r − r′|
× J(r′) = −

R̂

|r − r′|2
× J(r′)

where we have used

∇
1

|r − r′|
=

R̂

|r − r′|2
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Back to B

The expression for B matches up with the
experimentally observed equation

B = ∇× A =
µ

4π

∫

V

J(r′) × R̂

R2
dV ′
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