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Point Charge Near Ground Plane

Consider a point charge q sitting a distance d above a
conductive ground plane. We’d like to find the electric
field E everywhere

Clearly E = 0 for z < 0 due to the conductor. Also, since
ρ = 0 everywhere except for point (0, 0, d). Thus we can
say that φ satisfies Laplace’s equation for all points
z > 0 except (0, 0, d) where the point charge lives

d

q

z > 0

E = 0

(0, 0, d)

E = −ẑEz

University of California, Berkeley EECS 217 Lecture 13 – p. 2/21



Method of Images

Consider now a problem we have met before. If we
have two charges of equal and opposite magnitude at
z = ±d, then the solution is trivial. How is this problem
related?

Notice that for this new problem the electric field is
normal to the xy plane at z = 0

E(z = 0) =
q(xx̂ + yŷ + dẑ)

4πε(x2 + y2 + d2)3/2
+

−q(xx̂ + yŷ − dẑ)

4πε(x2 + y2 + d2)3/2
+

Combining the terms we have a z-directed vector

E(z = 0) =
−q2dẑ

4πε(x2 + y2 + d2)3/2
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The Image Charge

Now consider placing a conductive plane at z = 0. Do
the fields need to change? The boundary condition is
already satisfied by this field configuration. In other
words, this problem satisfies the same boundary
conditions as our original problem

This negative charge is the “image” charge that actually
solves our original problem!

Recall that the solution of Poisson’s equation is
uniquely determined by the boundary conditions. Since
this image problem satisfies the problem for z > 0 and
also the boundary conditions, it’s the solution!

Of course it’s only the solution for points z > 0 since we
know that E = 0 for z < 0
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E Field Plots
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The vector field plot for a dipole distribution is shown on the
left. The upper half field plot is also the solution to the
monopole charge placed near a ground plane.
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Surface Charge Density

For a conductive boundary, the normal component of D
is equal to the surface charge density

ρs(x, y, 0) = ẑ · εE(z = 0) =
−2qd

4π(x2 + y2 + d2)3/2

As expected, there is a negative charge density induced
on the surface of the plane

ρs(x, y, 0) =
2qd

4π(x2 + y2 + d2)3/2
−

-4 -2 0 2 4 6

ρs(x, 0, 0) =
−2qd

4π(x2 + d2)3/2
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Forces on Dielectrics

Due to polarization, a dielectric will feel a force when in
the presence of a field

We can use the principle of virtual work to calculate
how much work it takes to slightly displace a dielectric
in a field. This work must go into the energy of the field

Example: Consider the force on a dielectric insulator
placed part-way into a parallel plate capacitor. Let’s
assume that the plates of the capacitor are charged to a
voltage difference of V0

++++++++++++++++++++++++

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Energy Calculation

The energy stored in the capacitor volume is (ignoring
fringing fields)

E =
1

2
C1V

2

0 +
1

2
C0V

2

0

=
1

2

wd1ε

t
V 2

0 +
1

2

w(` − d1)ε0
t

V 2

0

Now displace the dielectric slightly to the right

E′ =
1

2

w(d1 + ∆d)ε

t
V 2

0 +
1

2

w(` − d1 − ∆d)ε0
t

V 2

0

The energy of the system has been increased due to
the additional amount of material polarization. Does this
energy come from us pushing or the battery?

University of California, Berkeley EECS 217 Lecture 13 – p. 8/21



Energy Change and Force

The energy difference between the final and initial state
is simply

∆E = E′
− E = −

w∆dV 2
0

2t
(ε − ε0)

If the motion is incremental, we can say that δE = δdF

The force is therefore given by

F =
2

2t
V 2

0 (ε − ε0) =
1

2
wtE2

0(ε − ε0)

It’s not clear at this point if the force is positive or
negative!
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Electrons in Metals

Electrons are the charge carriers in most metals. They
are free to move unimpeded in the crystal at low
temperatures. At high temperature the random vibration
(phonons) of the positive ion lattice can scatter
electrons. Likewise, the presence of impurities can also
scatter electrons.

At thermal equilibrium with no external fields, therefore,
the electrons are in motion with random direction and
speed. The net velocity of the ensemble of electrons is
zero.

The thermal velocity is quite high (1

2
mv2 = kT

2
) with

vth ∼ 107cm/s
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Drift Velocity

When a carrier in a conductor is accelerated by an
external field, it initially travels in the direction of the
field. But after scattering with an impurity or phonon,
the electron’s new trajectory is random and
independent of the field

Let’s suppose that the average time between collisions
is tc. Then in this period the momentum of electrons is
increased by qE due to the external field, mvd/tc = qE.

The average velocity of carriers increases proportional
to the field E

vd =
qtc
m

E = µE

The constant µ is the mobility and the “drift” velocity vd

is so named because most of the motion is still random
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Electron Drift

v̄ =
1

N

∑

i

vi = 0 v̄ =
1

N

∑

i

vi ≈ x̂vd

In the left figure, electrons are moving with random velocity
(net motion is zero). On the right figure, electrons are
moving with random velocity plus a drift component to the
right (drift has been exaggerated).
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Definition of Current

Current is defined as the amount of charge crossing a
particular cross sectional area per unit time. Consider a
density of N carriers carrying a charge q and moving
with drift velocity vd. How many cross a perpendicular
surface A?

In a time ∆t, carriers move a distance of vdt. So any
carriers in the volume Avdt will cross the surface if they
are all moving towards it. The current is therefore

I =
Avd∆tNq

∆t
= vdNqA

The vector current density J is therefore

J = Nqvd

University of California, Berkeley EECS 217 Lecture 13 – p. 13/21



Conductivity

Since we found that the velocity is proportional to the
field, it follows that J is also proportional

J = Nqvd = NqµE

The constant σ = µqN is known as the conductivity of
the material. It varies over several orders of magnitude
for conductors and dielectrics

This is in fact a statement of Ohm’s law V = RI in
microscopic form. Often we work with the resistivity of
the material ρ = σ−1

Since σ is very easy to measure, we can indirectly
calculate tc for a material. For a good conductor
σ ∼ 107S/m.
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Ohm’s Law

We assert that the ratio between the voltage and
current in a conductor is always constant. We see this
stems from J = σE

I =

∫

A
J · dS =

∫

A
σE · dS

V =

∫

C
E · d`

The ratio is called the resistance

R =
V

I
=

∫

C E · d`
∫

A σE · dS
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Resistance

The integrals over E depend only on the geometry of
the problem and scale with voltage

Equivalently, if we increase V , the flux lines for E
remain the same but of a higher magnitude. Thus the
current J is the same and only I increases by the same
factor that V increases.

Example: Block of conductor. The electric field will be
shown to be everywhere constant and parallel to the
conductor

V = E0`

I = AσE0

J = σE0 =
I

A

R =
V

I
=

`

σA
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Charge Conservation

One of the fundamental facts of nature is charge
conservation. This has been experimentally observed
and verified in countless experiments.

Therefore if we look at a volume bounded by surface S,
if there is net current leaving this volume, it must be
accompanied by a charge pile-up in the region of
opposite polarity

∮

S
J · dS = −

∂

∂t

∫

V
ρdV
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Current Continuity

We can transform this simple observation by employing
the Divergence Theorem

∮

S
J · dS =

∫

V
∇ · JdV

For any volume we have found that
∫

V
∇ · JdV −

∂

∂t

∫

V
ρdV =

∫

V

(

∇ · J +
∂ρ

∂t

)

dV = 0

If this is true for any volume V , it must be true that

∇ · J +
∂ρ

∂t
= 0
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Excess Charge

Since J = σE, we have

∇ · σE +
∂ρ

∂t
= 0

If the conductivity is constant, we have

σ∇ · E +
∂ρ

∂t
= 0

It is experimentally observed that Gauss’ law is satisfied
in all reference frames of constant velocity so ∇ · E = ρ

ε

σ

ε
ρ +

∂ρ

∂t
= 0
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Excess Charge (cont)

If we assume that ρ is a function of time only, the
equation

σ

ε
ρ +

dρ

dt
= 0

Let τ = σ/ε and solve the above equation

ρ = ρ0e
−

t

τ

Thus the charge density in a conductor decays
exponentially to zero with a rate determined by the time
constant τ = σ/ε, or the relaxation time of the material

Earlier we deduced that conductors have zero volume
charge density under electrostatic conditions. Now we
can estimate the time it takes to reach this equilibrium
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Relaxation Time for Good Conductors

In fact, a good conductor like copper has σ ∼ 108S/m

It’s hard to measure the dielectric constant of a good
conductor since the effect is masked by the conductive
response. For ε ∼ ε0, we can estimate the relaxation
time

τ ∼
10 × 1012

108
s ∼ 10−19s

This is an extremely short period of time!

How do electrons move so fast ? Note this result is
independent of the size of the conductor.

Answer: They don’t, only a slight displacement in the
charge distribution can balance the net charge and thus
transfer it to the border region.
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