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Review of Dipoles

An electric dipole is two equal and opposite charges q
separated by a distance d

We derived that the potential due to an electric dipole at
points far removed from the dipole r ≫ d

φ(r) =
q

4πǫ

(

1

r+
−

1

r−

)

≈
−qd cos θ

4πǫr2

We can define a vector dipole moment p = qd, where d

is a vector connecting the positive and negative charge

In terms of p, we can rewrite the above in a coordinate
independent manner

φ(r) =
r̂ · p

4πǫr2
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Properties of Insulators

So far we have only considered electrostatics in
vacuum and with ideal conductors. We now expand our
discussion to include insulators.

A perfect insulators cannot conduct DC current
because there are no mobile charges. All electrons in
the material are bound to the nucleus.

But there is a response to an external field due to the
dielectric properties of the material
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Electronic Polarization

For a spherically symmetric atom and electron could
distribution, for instance, the time average dipole
moment is zero. But the application of an external field
can distort the electronic charge distribution to produce
a net dipole

+

+

δz
a

Eext = 0

Eext 6= 0
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Electronic Polarization (II)

It’s easy to see why this happens. The electrons are
bound to the nucleus through the internal force of the
atom. This force is much stronger than our applied field
and so the probability that an electron will obtain
sufficient energy from the field to leave the atom is
negligible.

But the average electronic distribution is the minimum
energy configuration. If the electrons displace slightly
from their equilibrium positions, then the new
configuration yields lower overall energy in the
presence of a field
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Internal Field of an Atom

It’s important to note that the displacement ∆z ≪ r0 (r0

is the Bohr radius). This is because the internal field of
an atom is already very strong

Eint ∼
e

4πǫr2
0

∼ 1011V/m

This is several orders of magnitude larger than any field
we can impart onto the exam externally.

To first order, then, the response is linear with the field.
This is because for a small displacement, any function
looks linear

f(x + ∆x) ≈ f(x) + ∆xf ′(x)
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Atomic Dipole Moment

So based on the fact that Eext ≪ Eint, we expect that
the induced dipole moment in the atom to be small

p = e∆z

But since there are a lot of atoms, the net effect can be
large

The constant of proportionality is known as the
electronic polarizibility coefficient αe

p = αeE

Typically αe ∼ 10−40Fm2
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Ionic Polarizibility

For more complex molecules, like CH4, there can be
larger scale polarization. Instead of each individual
atom getting polarized, the shared covalent bond
electrons can re-arrange and produce a larger
polarization

In other cases, the molecules may have built-in
polarization due to ionic or covalent bonds.

Water is a good example. Normally the dipole moments
are pointing in random directions so the net polarization
for Eext = 0.
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Permanent Dipole Moments

But the application of an external field can align the
dipoles. The response can be huge due to the large
number of molecules involved.
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Dipole Moment Alignment

Unfortunately the effect of thermal energy tends to
re-randomize the orientation so we expect that on
average only a small fraction of the dipoles are aligned.

In fact, one can show that the probability that a
molecule to be aligned is related to the energy of a
dipole in an external field. The energy is proportional to
p2 and so the fraction of polarized molecules depends
on the ratio of p2 and 3kBT

α0 =
p2

3kBT

Typically α0 ∼ 10−38Fm2
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Total Polarization

In general, the total polarization arises from different
sources (induced and permanent). If the density of
polarization is N per volume, the net polarization is

P = NαE = ǫ0χeE

χe is known as the electric susceptibility

We are now in a position to derive the potential due
polarized matter. Let’s rewrite the potential due to a
single dipole

φ(r) =
1

4πǫ0

p · r̂

r2
=

−1

4πǫ0
p · ∇

1

r

Notice that ∇1

r
= ∇r−1 = r̂∂r

−1

∂r
= − r̂

r2
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Potential due to Polarization

Integrating over all dipoles we have

φ(r) =
−1

4πǫ0

∫

V

P · ∇
1

|r − r′|
dV =

1

4πǫ0

∫

V

P · ∇′
1

|r − r′|
dV

Note that ∇R−1 = −∇′R−1 where R = |r − r′|

Using the identity ∇ · (aA) = a∇ · A + A · ∇a

φ(r) =
1

4πǫ0

(
∫

V

∇′ ·
P

|r − r′|
dV −

∫

V

∇′ · P

|r − r′|
dV

)

By divergence theorem we can recast this into

φ(r) =
1

4πǫ0

(
∮

S

P · n̂

|r − r′|
dS −

∫

V

∇′ · P

|r − r′|
dV

)
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Effective Volume and Surface Charge

Notice that these integrals look like an ordinary potential
calculation for surface charge and volume charge

Define a surface charge density ρs = P · n̂ and a volume
charge density ρv = −∇′ · P. Then we have

φ(r) =
1

4πǫ0

(
∮

S

ρs

|r − r′|
dS +

∫

V

ρv

|r − r′|
dV

)

There must be a good explanation for this coincidence!
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Intuitive Picture

If the material is uniform and the external field is
uniform, then the polarization is also uniform and
∇′ · P = 0. The interpretation is that all the internally
induced polarizations cancel out

The dipoles on the boundary,
though, remain unbalanced
and thus produce a net
charge

If the polarization is non-
uniform, though, then ∇′ ·P 6=
0 and a volume polarization
arises
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Dielectric Boundary

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_
ǫ1

ǫ2

ǫ1 > ǫ2
Net charge

density

By the same token, if there is a discontinuity in the
material, one would expect surface charge to occur at
the boundary.

Imagine the interface of two materials with ǫ1 > ǫ2.
Since material one has a stronger polarization, it has
more bound charge which is imbalanced at the
interface. This means there is a discontinuity in the
electric field.
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Back to Gauss’ Law

Since the bound charges can create net charge, we
must include their contribution in Gauss Law

∇ · ǫ0E = ρfree + ρbound

Where ρbound = −∇ · P. Substituting in the above
equation

∇ · ǫ0E + ∇ · P = ρfree

Grouping terms we have (where ρ is now understood to
be free charge)

∇ · ǫ0E + P = ρfree = ρ
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Electric Flux Density Vector

We can re-define the electric flux density

D = ǫ0E + P

so that it depends only on free charge

∇ · D = ρ

Since the polarization is proportional to E

D = ǫ0E + ǫ0χeE = ǫ0(1 + χe)E

The dielectric constant captures the polarization effects
in a macroscopic coefficient ǫ = ǫrǫ0 = ǫ0(1 + χe)
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Dielectric Materials

One important application for a dielectric is to insulate
conductors from one another (coaxial transmission line)
while providing mechanical support

In a capacitor there is the additional benefit that the
capacitance increases. The capacitance increases
because the effect of the polarization is to produce a
net charge density at the top and bottom of the plates
that subtracts from the net charge on the conductors
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Parallel Plate Capacitor with Dielectric

So for a fixed applied field (voltage), the parallel plate
capacitor can support more charge

Another perspective is if we fix the amount of charge on
the plates, then the field in the dielectric is reduced and
hence the applied electric field is smaller

++++++++++++++++++++++++

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ǫ 6= ǫ0
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Boundary Conditions: Normal D

Applying Gauss’ law to the interface of two materials
∮

S

D · dS = (n̂ · D1)∆S − (n̂ · D2)∆S = ρs∆S

Thus the discontinuity in the normal field must be due to
surface charge

D1n − D2n = ρs

For dielectrics, there is no “free” surface charge and so
ρs = 0

n̂ · D1 = n̂ · D2

Or D1n = D2n. The normal electric field is discontinuous
ǫ1E1n = ǫ2E2n
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Boundary Conditions: Tangential E

Take the line integral around the interface. Since the
field is static, the line integral along any closed path is
identically zero

∫

C

E · dℓ = (E1t − E2t)∆w = 0

This means that the tangential field is always
continuous, E1t = E2t. Then the tangential component
of D is not continuous

D1t

ǫ1
=

D2t

ǫ2
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