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Parallel Plate Capacitor

A very convenient idealization is a parallel plate
capacitor. Here we take two conducting plates of area A
and separate them by a distance t. If t � min(dx, dy),
then the field is largly independent of x and y and only a
function of z. This is true especially in regions far from
the edges of the capacitor.

Now charge the upper plate to a voltage of V0 relative to
the bottom plate. For convenience take the reference of
zero potential at the bottom plate.

University of California, Berkeley EECS 217 Lecture 11 – p. 2/27



Potential in Parallel Plate Cap

If we neglect the edge effects, then the solution of the
potential in the charge free region between the plates is
governed by a one dimensional differential equation.

∇2φ =
∂2φ

∂z2
= 0

subject to the boundary conditions φ(0) = 0 and
φ(t) = V0. The solution is clearly a linear function
(integrate the above equation twice) φ(z) = C1z + C2

and applying the boundary coniditons to solve for C1

and C2 we arrive at

φ(z) =
V0

t
z
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Field and Charge in ||-Plate Cap

The electric field E = −∇φ can thus be computed by a
simple derivative and is a constant within the capacitor

E = −ẑ
V0

t

By Gauss’ law, the normal component of the electric
flux density is equal to the charge density on the plates.

D · n̂ = ρ

Since the field is in fact everywhere perpendicular to the
conductor, we simply have

ρtop = −ẑ · D = εV0

t ρbot = ẑ · D = −εV0

t
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||-Plate Capacitance

To find the capacitance we simply note that we’re
interested in the coefficient q = CV0. To get the total
charge, we multiply the constant charge density by the
area of the plate q = ρtopA = εA

t V0 = CV0,C = εA
t

This equation is intuitively satisfying. The capacitance
goes up with A since for a fixed charge on the plates,
the charge density drops and so does the potential
giving a larger capacitance.

Likewise, if we increase t the capacitance drops since
now there is less motiviation for positive (negative)
charge to flow onto the top (bottom) plate! The charges
are more distant from their beloved negative (positive)
charges.
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General Capacitance Equation

For two conductors of any shape, the capacitance is
defined as

C ,
Q

φ12

The potential difference φ12 is the line integral of E over
any path from conductor 1 to conductor 2.

By Gauss’ law, the positive charge on conductor 1 is
equal to the electric flux crossing any surface enclosing
the conductor.

The capacitance is therefore written as

C =

∮
S
D · dS

−
∫
C

E · d`
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Multiple-Conductors

The concept of capacitance can be generalized to
multiple conductors

q1 = C11V1 + C12V2 + C13V3 + . . .

q2 = C21V1 + C22V2 + C23V3 + . . .
...

Each coefficent Cii represents the self capacitance. It
can be computed by applying Vi = 1V to conductor i
while grounding all other conductors. Then Cii is simply
the total charge the conductor.

Likewise, to find Cij, we apply a voltage of Vj = 1V to
conductor j while grounding all other conductors. Then
Cij is again simply the total charge on conductor i.
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Grounding

When we say we “ground” all other conductors, we
mean that we connect them to a voltage source of zero
volts

Recall that voltage is always defined relative to a
reference. For instance, we may take one of the
conductors as the “ground” reference and then measure
all aboslute voltages relative to this conductor.

Otherewise we may also connect the conductors to a
much larger body, one with infinite capacitance. Then
charge can be freely removed or added to the “ground”
without changing its potential.
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Coefficients of Potential

We may also express the voltage on each conductor in
terms of the total charge on each conductor in the
system in the following manner

v1 = P11q1 + P12q2 + P13q3 + . . .

v2 = P21q1 + P22q2 + P23q3 + . . .
...

To find Pij, we add a charge of 1C to conductor j and
leave all other conductors neutral. Then we observe the
voltage at conductor i
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Coefficient of Potentials (cont)

This applies by direct application of superposition to the
equation

φ(r) =

∫
V

ρ(r′)

4πε|r − r′|
dV ′ =

∑
i

∫
Vi

ρ(r′)

4πε|r − r′|
dV ′

Notice that this equation scales linearly with the
absolute amount of charge on conductor i. So we may
perform the integral based solely on geometric
calculations to obtain coefficient Pij

φ(r) =
∑

i

qi

∫
Vi

ρ(r′)/qi

4πε|r − r′|
dV ′
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Capacitance Matrix (I)

Or in matrix form, we may write v = Pq. If the matrix P
is not singular, we may invert this equation to obtain
q = P−1v

We may be temped to call P−1
ij a capacitance but notice

that these coefficients are in terms of the potential Vi

relative to a common reference

q1 = c11V1 + c12V2 + c13V3 + . . .

q2 = c21V1 + c22V2 + c23V3 + . . .
...

To relate cij to Cij, simply equate the total charges

q1 = C11V1 + C12V12 + C13V13 = c11V1 + c12V2 + c13V3 + . . .
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Capacitance Matrix (II)

Since V1i = V1 − Vj, we have

C11 = c11 + c12 + c13 + . . .

And also Cij = −cij

So these matrices are related but not the same. Notice
that cij < 0 is logical, since if we put a positive voltage
on node j and obsever the induced charge on node i, it
should be negative.

On the other hand Cij > 0, since if we connect the
positive terminal of a batter no node i and the negative
node of the battery to node j, then the charge on node i
should be positive

Capacitors in SPICE are always of the Cij form, and
hence positive.
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Electrostatic Energy of a Capacitor

Consider the energy required to charge a capacitor

The amount of work released to move a charge dQ from
the positive terminal to the negative terminal is
dU = V dQ. This work must be stored in the capacitor

dU = V dQ = CV dV

Integrating over the volage on the capacitor we have

U =
1

2
CV 2

We say that this energy is stored in teh field of the
capacitor. This line of reasoning will become clear as
we develop these ideas further

University of California, Berkeley EECS 217 Lecture 11 – p. 13/27



Energy in terms of the Field

For a parallel plate capacitor, the field is constant and
equal of E = V/d. If we substitute in the energy
equation, we have

U =
1

2
CE2d2

where C = εA/d. Substituting further

U =
1

2

εA

d
E2d2 =

1

2
εVE2

Where V = dA is the volume of the region in between
the plates. Since the fields are confined to this volume,
we may speculate that the energy density is also so
confined
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Preview: Energy Density

In this particular case, we have

u =
U

V
=

1

2
εE2 =

1

2
D · E

We will show later that this is true in general for any
electrostatic field
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Energy for Two Conductors

Consider the energy required to charge two conductors
to voltages φ1 and φ2. Let’s do the calculation in
phases. First apply voltage φ1 to conductor 1 but keep
conductor 2 grounded. A charge q1 = c11φ1 flows onto
conductor one whereas a charge q2 = c21φ1 flows onto
conductor two. Since conductor 2 is grounded, there is
no energy required to add or remove charge from it. For
conductor 1, though, the energy required is 1

2
c11φ

2
1.

Now raise the voltage on conductor 2 from zero to φ2.
An additional work of 1

2
c22φ

2
2 is required. But an

additional charge of q1 = c12φ2 also flows onto conductor
one. The work required to do this is c12φ1φ2 (no
integration is required since the potential is fixed at φ1)
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Total Work for Two Conductors

The total work is therefore the sum of the various terms

W =
1

2
c11φ

2
1 +

1

2
c22φ

2
2 + c12φ1φ2

But if we had reversed the order of charging the
conductors, we would have arrived at the following
result

W ′ =
1

2
c11φ

2
1 +

1

2
c22φ

2
2 + c21φ2φ1

But the energy of the system would surely be the same,
or W = W ′ which implies that c12 = c21

Thus the capacitance matrix is symmetric.

A symmetric matrix with non-zero diagonal is invertible
thus justifying why we could go freely from P to C
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Energy Again ...

Let’s derive this result more directly as follows. The
energy increment dW = dQv where we add charge dQ
at constant voltage v.

On conductor one we have

q1 = c11V1 + C12V2 + . . .

dq1 = c11dV1 + C12dV2 + . . .

So the energy increment is given by

dW = dq1V1 = c11V1dV1 + C12V1dV2 + . . .

Integration yields

W =
1

2
C11V

2
1 + C12V1V2 + . . .
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Parallel Capacitors

From circuit theory we know how to add capacitors in
series or parallel

Parallel caps are easier. If we connect two conductors
and connect them to a potetial V0, the charge is simply
the total charge

Q = Q1 + Q2 = C1V0 + C2V0 = (C1 + C2)V0

In general we have

C|| = C1 + C2 + C3 + . . .
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Series Capacitors

For series capacitors, note that the applied voltage is
divided between the capacitors

V0 = V1 + V2 =
Q1

C1

+
Q2

C2

The central observation is that the charge on each
capacitor is the same, |Q1| = |Q2|

This is because the floating node must have zero net
charge and thus −Q1 = Q2

The result can be easily generalized

1

Cseries

=
1

C1

+
1

C2

+
1

C3

+ . . .

University of California, Berkeley EECS 217 Lecture 11 – p. 20/27



Energy for a Two Point Charges

Let’s find the total energy for a distribution of point
charges. We can imagine building up the distribution
one charge at a time

The energy to bring in the first charge is naturally zero
since the field is zero

The second charge, though, is repelled (or attracted) to
the first charge so it requires more (less) energy to
bring it in. In general the work required is given by

W2 = Q2φ12

where φ12 is the potential due to charge 1
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Energy Three Point Charge Distribution

Since the electrostatic field is conservative, it does not
matter how we bring in the second charge. Only its final
position relative to the first charge is important.

In terms o

W2 = Q2φ12 =
Q2Q1

4πεR12

where R12 is the final distance between the point
charges.

Likewise, when we bring in the third charge, the extra
work required is

W3 = Q3φ13 + Q3φ23 =
Q3Q1

4πεR13

+
Q3Q2

4πεR23
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Energy for Point Charge Distribution

We can therefore write in general that the electrostatic
energy takes on the following form

4πεW =
Q1Q2

R12

+
Q1Q3

R13

+
Q1Q4

R14

+ . . .+
Q2Q3

R23

+
Q2Q4

R24

+ . . .

The general term has the form QiQj

4πRij
where i and j sum

over all the particles in the system

W =
1

2

∑ ∑
i6=j

QiQj

4πRij

The factor of 1
2

takes care of the double counting and
enforcing i 6= j ensures that we don’t try to include the
“self” energy of the particles.
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Static Energy in terms of Potential

We can rewrite the double sum into a more general form
by observing that the inner sum is simply the potential
due to all the particles evaulated at position of particle i

W =
1

2

∑
i6=j

Qi

∑
j

Qj

4πRij
=

1

2

∑
i6=j

Qiφi

If we now consider a charge distribution ρ(r), it’s easy to
see how the above sum turns into an integral

W =
1

2

∫
V

ρφdV
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Static Energy in terms of Fields

The derived expression can be modified if we substitute
ρ = ∇ · D for charge

W =
1

2

∫
V

∇ · DφdV

and employ the chain rule

∇ · φD = φ∇ · D + D · ∇φ

Since ∇φ = −E, we have two volume integrals

W =
1

2

∫
V

∇ · φDdV +
1

2

∫
V

D · EdV
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Surface Integral Terms

We can show that the first integral vanishes as follows.
First apply the divergence theorem

∫
V

∇ · φDdV =

∮
S

φD · n̂dS

Now take a surface S that is very large. In fact take a
large sphere. If the sphere is very large and the charge
distribution is of finite extent, then at some great
distance from the source the actual charge distribution
is immaterial. Only the net charge matters. We know
that the radial potential and fields for a charge density
take on the following limiting forms φ ∼ 1

r D ∼ 1
r2

Since the surface area S ∼ r2, the integrand vanishes
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Final Expression for Electrostatic Energy

Therefore the electrostatic energy takes on the following
form

W =
1

2

∫
V

D · EdV

If we define the energy density w, we have

W =
1

2

∫
V

wdV

w =
1

2
D · E

We found this to be true for an ideal capacitor but now
we see this is true in general
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