EECS 117

Lecture 10: Laplace's Eq, Curl, and Capacitance

Prof. Niknejad

University of California, Berkeley

Laplace's Equation

$$\nabla^2 \psi = 0$$

• If ψ satisfies Laplace's eq., then the average value of ψ over a sphere is equal to the value of ψ at the center of the sphere.

▶ Proof: We'll use a physical argument to arrive at this result. Consider a point charge q and a spherical surface with uniform charge q' distributed on the surface at a distance R from the point charge. If q is brought in from infinity, the work done is simply $W = \frac{qq'}{4\pi\epsilon R}$

Average Value Property

- On the other hand, if we bring in the sphere from infinity the work required is certainly the same. This work is the average value of the potential due to q computed over the surface S. This work is also $W = \frac{qq'}{4\pi\epsilon R}$ and thus $\bar{\psi} = \frac{q}{4\pi\epsilon R}$. But that's the potential at the center of the sphere due to q.
- This has several interesting consequences. One is that there is no stable electrostatic configuration in empty space. To see this observe that the potential of such a point must be local minima or maxima and a function that has the average value property cannot have a maxima/minima.

Instability of Static Field in Vacuum

Another argument from Guass' law also confirms this fact. For such a stable point to exists all the field lines would have to either point into (out of) this region. But Gauss' law says that such a region must have charge and so it's not empty space.

Uniqueness Argument

- The solution of Laplace's equation is unique. The proof is simple using the average value property.
- Assume that there is more than one solution to Laplace's equation. Call two such solutions $\psi(r)$ and $\varphi(r)$ and form the difference solution $W(r) = \psi(r) \varphi(r)$. Due to linearity, W also satisfies the Laplacian equation but with different boundary conditions.

Uniqueness Argument (cont)

In particular, W(r) is the solution to the problem with zero boundary conditions. But if W is zero on the boundary and non-zero in the interior of the problem space, then clearly W must have maximum or minimum point. But such a function cannot be a solution to Laplace's equation.

Faraday Cage

Consider the solution of Laplace's equation for a Faraday cage. This is a closed region bounded by a conducting walls. It's easy to now show that $E \equiv 0$ inside this region. To see this notice that the solution of Laplace's equation in this region must satisfy $\phi = \text{constant}$ on the boundary. But the function $\phi(r) = \text{constant does in fact satisfy}$ Laplace's equation and the boundary conditions. Since the solution is unique, this is indeed the solution we seek. Thus the electric field is zero since $\mathbf{E} = -\nabla \phi$.

Divergence Theorem Mini-Proof

• When calculating the flux of an arbitrary function about a surface S, we can always break the sum into a subset of surfaces that make up S

$$\int_{S} \mathbf{D} \cdot d\mathbf{S} = \sum_{i} \int_{S_{i}} \mathbf{D} \cdot dS$$

Definition of Curl

• If we simply now divide and multiply the integrand by the volume ΔV of the closed surface S_i and take limits, we have the divergence theorem

$$\int_{S} \mathbf{D} \cdot d\mathbf{S} = \sum_{i} \frac{\int_{S_{i}} \mathbf{D} \cdot dS}{\Delta V_{i}} \Delta V_{i} \to \int_{V} \nabla \cdot \mathbf{D} dV$$

• We can use a similar argument to arrive at an appropriate definition of curl. Consider the path integral of an arbitrary vector function about a closed loop C. We can always compute this by taking sub-paths C_i since the internal contribution of the integral will cancel out in the integral.

Curl (cont)

$$\oint_C \mathbf{E} \cdot d\ell = \sum_i \oint_{C_i} \mathbf{E} \cdot d\ell$$

- Since $C = C_1 + C_2 + \dots$ Notice that the surfaces of each sub curve ΔS_i can have *any* shape.
- Let's now divide and multiply by this surface area ΔS_i

$$\oint_C \mathbf{E} \cdot d\ell = \sum_i \frac{\oint_{C_i} \mathbf{E} \cdot d\ell}{\Delta S_i} \Delta S_i$$

Curl as Vector

- **●** This is almost a surface integral! We just need to specify the direction for ΔS_i to make sure that in the limit it's coincident with the normal vector $\hat{\mathbf{n}}$ for surface S.
- In fact, we can define the curl to be this particular integral evaluated about a surface in a particular plane defined by it's normal n̂

$$\hat{\mathbf{n}} \cdot \operatorname{curl}(\mathbf{E}) = \lim_{\Delta S \to 0} \frac{\oint_C \mathbf{E} \cdot d\ell}{\Delta S}$$

• We write this as $\nabla \times \mathbf{E}$ and treat it as a vector.

Curl Vector Components

To be a true vector, then it must obey vector laws. In particular if we compute

$$\hat{\mathbf{x}} \cdot \nabla \times \mathbf{E} = C_x$$
 $\hat{\mathbf{y}} \cdot \nabla \times \mathbf{E} = C_y$
 $\hat{\mathbf{z}} \cdot \nabla \times \mathbf{E} = C_z$

• And now desire to compute the curl about a new direction defined by normal vector $\hat{\mathbf{a}} = \alpha_1 \hat{\mathbf{x}} + \alpha_2 \hat{\mathbf{y}} + \alpha_3 \hat{\mathbf{z}}$, then we must have

$$\hat{\mathbf{a}} \cdot \nabla \times \mathbf{E} = \alpha_1 C_x + \alpha_2 C_y + \alpha_3 C_z$$

Stoke's Theorem

Returning to our original equation, if we take limits we have

$$\oint_C \mathbf{E} \cdot d\ell = \int_S \nabla \times \mathbf{E} \cdot d\mathbf{S}$$

For a static field we found that for any closed path

$$\oint_C \mathbf{E} \cdot d\ell \equiv 0$$

■ That implies that $\nabla \times \mathbf{E} \equiv 0$ for a static field.

Capacitance

Capacitance of a conductor is defined as

$$C \triangleq \frac{q}{\phi}$$

- where a larger C means that an object can store more charge at a fixed potential. Hence it's a measure of capacity to store charge.
- As an example consider an isolated spherical conductor of radius a. By Gauss' law we know the radial field is given by $(r \ge a)$

$$D_r = \frac{q}{4\pi a^2}$$

Capacitance of a Sphere

If we integrate this field to arrive at the potential, we have

$$\phi = -\int_{\infty}^{a} E_r dr = -\frac{q}{4\pi\epsilon} \int_{\infty}^{a} \frac{dr}{r^2} = \frac{q}{4\pi\epsilon} \left(\frac{1}{r} \right)_{\infty}^{a} = \frac{q}{4\pi\epsilon a}$$

The capacitance is therefore

$$C = 4\pi\epsilon a \propto a$$

The larger sphere can hold more charge at a fixed potential. Equivalently, dumping a given charge onto a larger sphere will increase it's potential less than a smaller sphere.

Capacitance Between Objects

We can also define the capacitance between two objects as

$$C_{12} = \frac{q_1}{\phi_{12}}$$

- Where we fix the potential between the two objects at ϕ_{12} and measure the amount of charge transfer between the objects. In the above equation a charge of q_1 has been transfered from object 2 to 1 and therefore a charge of $q_2 = -q_1$ will reside on object 2.
- We can re-interpret the capacitance of a single object as the capacitance relative to a reference at infinity.

Capacitance of a Coaxial Cylinder

Let's practice and use Poisson's equation to find the potential in the region between the conductors

$$\nabla^2 \phi = 0$$

Coaxial Cylinder (II)

• By symmetry ϕ is only a function of r and not a function of θ or z

$$\nabla \cdot \nabla \phi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) = 0$$

$$r\frac{\partial \phi}{\partial r} = C_1$$

$$\frac{\partial \phi}{\partial r} = \frac{C_1}{r}$$

• The general solution is therefore $\phi(r) = C_1 \ln r + C_2$.

Coaxial Cylinder (III)

• This solution must satisfy the boundary conditions that $\phi(a) = V_1$ and $\phi(b) = 0$.

$$\phi(r = a) = V_1 = C_1 \ln a + C_2$$

$$\phi(r = b) = 0 = C_1 \ln b + C_2$$

Solving these equations we have

$$\phi(r) = \frac{V_1 \ln r/b}{\ln a/b}$$

• The field is given by $\mathbf{E} = \hat{\mathbf{r}} E_r = -\hat{\mathbf{r}} \frac{\partial \phi}{\partial r}$

$$\mathbf{E} = \frac{\mathbf{\hat{r}}V_1}{r\ln b/a}$$

Charge Density

• Recall that $\mathbf{D} \cdot \hat{\mathbf{n}} = \rho_s$ on the surface of conductors. Therefore for a length of ℓ of the coaxial conductors

$$\frac{\epsilon V_1}{a\ln(b/a)} = \frac{q}{2\pi a\ell}$$

Solve for the charge to find the capacitance

$$q = \frac{2\pi\epsilon}{\ln\frac{b}{a}}\ell V_1$$

The capacitance per unit length is therefore

$$C' = \frac{C}{\ell} = \frac{2\pi\epsilon}{\ln\frac{b}{a}}$$

References

"Electricity and Magnetism," by Edward Purcell (second edition) published by McGraw-Hill Book Company (1985).