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Laplace’s Equation

∇
2ψ = 0

If ψ satisfies Laplace’s eq., then the average value of ψ
over a sphere is equal to the value of ψ at the center of
the sphere.

q′ qR

S

Proof: We’ll use a physical argument to arrive at this
result. Consider a point charge q and a spherical
surface with uniform charge q′ distributed on the surface
at a distance R from the point charge. If q is brought in
from infinity, the work done is simply W = qq′

4πεR

University of California, Berkeley EECS 117 Lecture 10 – p. 2/21



Average Value Property

On the other hand, if we bring in the sphere from infinity
the work required is certainly the same. This work is the
average value of the potential due to q computed over
the surface S. This work is also W = qq′

4πεR and thus
ψ̄ = q

4πεR . But that’s the potential at the center of the
sphere due to q.

This has several interesting consequences. One is that
there is no stable electrostatic configuration in empty
space. To see this observe that the potential of such a
point must be local minima or maxima and a function
that has the average value property cannot have a
maxima/minima.
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Instability of Static Field in Vacuum

∮
D dS 6= 0

Another argument from Guass’ law also confirms this fact.
For such a stable point to exists all the field lines would
have to either point into (out of) this region. But Gauss’ law
says that such a region must have charge and so it’s not
empty space.
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Uniqueness Argument

The solution of Laplace’s equation is unique. The proof
is simple using the average value property.

Assume that there is more than one solution to
Laplace’s equation. Call two such solutions ψ(r) and
ϕ(r) and form the difference solution W (r) = ψ(r)−ϕ(r).
Due to linearity, W also satisfies the Laplacian equation
but with different boundary conditions.
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Uniqueness Argument (cont)

W (r)

W (∂S) = 0

In particular, W (r) is the solution to the problem with zero
boundary conditions. But if W is zero on the boundary and
non-zero in the interior of the problem space, then clearly
W must have maximum or minimum point. But such a
function cannot be a solution to Laplace’s equation.

University of California, Berkeley EECS 117 Lecture 10 – p. 6/21



Faraday Cage

Consider the solution of Laplace’s equation for a Faraday
cage. This is a closed region bounded by a conducting
walls. It’s easy to now show that E ≡ 0 inside this region.
To see this notice that the solu-
tion of Laplace’s equation in this
region must satisfy φ = constant
on the boundary. But the function
φ(r) = constant does in fact satisfy
Laplace’s equation and the bound-
ary conditions. Since the solution is
unique, this is indeed the solution we
seek. Thus the electric field is zero
since E = −∇φ.

E = 0

E 6= 0
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Divergence Theorem Mini-Proof

S

n̂1

n̂2

S1

S2

S = S1 ∪ S2

When calculating the flux of an arbitrary function about
a surface S, we can always break the sum into a subset
of surfaces that make up S

∫

S

D · dS =
∑

i

∫

Si

D · dS
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Definition of Curl

If we simply now divide and multiply the integrand by
the volume ∆V of the closed surface Si and take limits,
we have the divergence theorem

∫

S

D · dS =
∑

i

∫

Si

D · dS

∆Vi
∆Vi →

∫

V

∇ · DdV

We can use a similar argument to arrive at an
appropriate definition of curl. Consider the path integral
of an arbitrary vector function about a closed loop C.
We can always compute this by taking sub-paths Ci

since the internal contribution of the integral will cancel
out in the integral.
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Curl (cont)

C

C1

C2
∮

C

E · d` =
∑

i

∮

Ci

E · d`

Since C = C1 + C2 + . . .. Notice that the surfaces of
each sub curve ∆Si can have any shape.

Let’s now divide and multiply by this surface area ∆Si

∮

C

E · d` =
∑

i

∮

Ci

E · d`

∆Si
∆Si
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Curl as Vector

This is almost a surface integral! We just need to
specify the direction for ∆Si to make sure that in the
limit it’s coincident with the normal vector n̂ for surface
S.

In fact, we can define the curl to be this particular
integral evaluated about a surface in a particular plane
defined by it’s normal n̂

n̂ · curl(E) = lim
∆S→0

∮

C
E · d`

∆S

We write this as ∇× E and treat it as a vector.
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Curl Vector Components

To be a true vector, then it must obey vector laws. In
particular if we compute

x̂ · ∇ × E = Cx

ŷ · ∇ × E = Cy

ẑ · ∇ × E = Cz

And now desire to compute the curl about a new
direction defined by normal vector â = α1x̂ + α2ŷ + α3ẑ,
then we must have

â · ∇ × E = α1Cx + α2Cy + α3Cz
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Stoke’s Theorem

Returning to our original equation, if we take limits we
have

∮

C

E · d` =

∫

S

∇× E · dS

For a static field we found that for any closed path
∮

C

E · d` ≡ 0

That implies that ∇× E ≡ 0 for a static field.

University of California, Berkeley EECS 117 Lecture 10 – p. 13/21



Capacitance

Capacitance of a conductor is defined as

C ,
q

φ

where a larger C means that an object can store more
charge at a fixed potential. Hence it’s a measure of
capacity to store charge.

As an example consider an isolated spherical conductor
of radius a. By Gauss’ law we know the radial field is
given by (r ≥ a)

Dr =
q

4πa2
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Capacitance of a Sphere

If we integrate this field to arrive at the potential, we
have

φ = −

∫ a

∞

Erdr = −
q

4πε

∫ a

∞

dr

r2
=

q

4πε

(

1

r

∣

∣

∣

∣

a

∞

=
q

4πεa

The capacitance is therefore

C = 4πεa ∝ a

The larger sphere can hold more charge at a fixed
potential. Equivalently, dumping a given charge onto a
larger sphere will increase it’s potential less than a
smaller sphere.
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Capacitance Between Objects

We can also define the capacitance between two
objects as

C12 =
q1
φ12

Where we fix the potential between the two objects at
φ12 and measure the amount of charge transfer
between the objects. In the above equation a charge of
q1 has been transfered from object 2 to 1 and therefore
a charge of q2 = −q1 will reside on object 2.

We can re-interpret the capacitance of a single object
as the capacitance relative to a reference at infinity.
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Capacitance of a Coaxial Cylinder

a

b

V1

Let’s practice and use Poisson’s equation to find the
potential in the region between the conductors

∇
2φ = 0
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Coaxial Cylinder (II)

By symmetry φ is only a function of r and not a function
of θ or z

∇ · ∇φ =
1

r

∂

∂r

(

r
∂φ

∂r

)

= 0

r
∂φ

∂r
= C1

∂φ

∂r
=
C1

r

The general solution is therefore φ(r) = C1 ln r + C2.
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Coaxial Cylinder (III)

This solution must satisfy the boundary conditions that
φ(a) = V1 and φ(b) = 0.

φ(r = a) = V1 = C1 ln a+ C2

φ(r = b) = 0 = C1 ln b+ C2

Solving these equations we have

φ(r) =
V1 ln r/b

ln a/b

The field is given by E = r̂Er = −r̂
∂φ
∂r

E =
r̂V1

r ln b/a
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Charge Density

Recall that D · n̂ = ρs on the surface of conductors.
Therefore for a length of ` of the coaxial conductors

εV1

a ln(b/a)
=

q

2πa`

Solve for the charge to find the capacitance

q =
2πε

ln b
a

`V1

The capacitance per unit length is therefore

C ′ =
C

`
=

2πε

ln b
a
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