EECS 117

Lecture 1: Transmission Lines

Prof. Niknejad

University of California, Berkeley



First Trans-Atlantic Cable

f.o Problem: A long cable — the trans-atlantic telephone T
cable — is laid out connecting NY to London. We would
like analyze the electrical properties of this cable.

# For simplicity, assume the cable has a uniform
cross-secitonal configuration (shown as two wires here)

Ryy

Vy (1) =

o -
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Trans-Atlantic Cable Analysis

=

Can we do it with circuit theory?

Fundamental problem with circuit theory is that it
assumes that the speed of light is infinite. So all signals
are in phase: V(z) =V (z + ¢)

Consequently, all variations in space are ignored:
9

9 .0

0z
This allows the lumped circuit approximation.

-
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Lumped Circuit Properties of Cable

- .

# Shorted Line: The long loop has inductance since the
magnetic flux ¢ Is not negligible (long cable) (i = LI)

(@ =CV)
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Sectional Model (1)

- .

® So do we model the cable as an inductor or as a
capacitor? Or both? How?

# Try a distributed model: Inductance and capacitance
occur together. They are intermingled.

# Can add loss (series and shunt resistors) but let’s keep
It simple for now.

# Add more sections and solution should converge

o -
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Sectional Model (1)

- .

# More sections — The equiv LC circuilt represents a
smaller and smaller section and therefore lumped
circuit approximation is more valid

# This is an easy problem to solve with SPICE.

# But the people 1866 didn’'t have computers ... how did
they analyze a problem with hundreds of inductors and
capacitors?

o -
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Distributed Model

L =6z

C =6zC"
I NG

- ~
0z
L L L L
....... _fm\__fm\__._._._.__fm\__m__._._._._
C" — C' o< o e o/ — C" — (Gp—

# Go to a fully distributed model by letting the number of
sections go to infinity

# Define inductance and capacitance per unit length
L'=L/C'=C/t

# For an infinitesimal section of the line, circuit theory
applies since signals travel instantly over an

~infinitesimally small length .
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KCL and KVL for a small section

® KCL:i(z) = 620"22) 1 i(z 4 52)
® KVL:v(z) = 52[/8@(%42&) +v(z 4+ 42)

# Takelimitas 6z — 0
We arrive at “Telegrapher’s Equatins”

lim i(z) —i(z 4+ 02) _ o 0,@

§2—0 0z 0z ot

o -
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Derivation of Wave Equations
- o

# We have two coupled equations and two unkowns (i
and v) ... can reduce it to two de-coupled equations:

O _ 0 Po_ 0"
otz ot? 022 020t
# note order of partials can be changed (at least in EE)
0%v 0%
o2~ " om

# Same equation can be derived for current:

0% 0%
02~ 0%

o -
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The Wave Equation
-

fWe see that the currents and voltages on the transmission
line satisfy the one-dimensional wave equation. This is a
partial differential equation. The solution depends on
boundary conditions and the initial condition.

0%i 0%
— =
022 ¢ Ot2

o -
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Wave Equation Solution

-

Consider the function f(z,t) = f(z £ vt) = f(u):

of _ofou_of  0f _0fou_  Of

9z Oudz Ou ot  Ou ot ou
0% f  0%f Of _ 0 (Of\ _ 20
02z Ou? o2 du \ ot Ou2
#r_ 10
0z2  v2 Ot?

It satisfies the wave equation!

o -
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Wave Motion

f(z —t)
//W\/—\ ;
z

f(z 4 vt)

ZS
&
Y

# General voltage solution: v(z,t) = fT(z —vt) + f~ (2 + vt)

_ 1
N Whel’e V = .C

o -
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Wave Speed
B

Speed of motion can be deduced if we observe the
speed of a point on the aveform

z + vt = constant

To follow this point as time elapses, we must move the z
coordinate in step. This point moves with velocity

dz
© =0
at =

This is the speed at which we move with speed % ==

v IS the velocity of wave propagation

-
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Current / Voltage Relationship (I)
- o

# Since the current also satisfies the wave equation
i(z,t) =g (2 —vt) + g (2 +vt)

# Recall that on a transmission line, current and voltage
are related by

oL _,0v
2.~ Y

# For the general function this gives

dg* dg~  _,( OfF  Of
o0 T ow - ¢ (‘”%*”%

o -
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Current / Voltage Relationship (I1)
-

waves
89 / afjL g~ . / af_
ou =Cw Ou ou —Cw Ou
® Within a constant we have
+ _
g = ];— g~ = —];—
0 0

o Where Zy = 4/ % IS the “Characteristic Impedance” of
the line

o
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=

-
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Example: Step Into Infinite Line

Excite a step function onto a transmission line

The line is assumped uncharged: Q(z,0) =0,
Y (z,0) = 0 or equivalently v(z,0) =0and i(z,0) =0

By physical intuiition, we would only expect a forward
traveling wave since the line is infinite in extent

The general form of current and voltage on the line is
given by
v(z,t) = v (2 — vt)
v (2 — vt)
2
The T-line looks like a resistor of Z; ohms!

i(z,t) =it (2 —vt) =

-
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Example 1 (cont)

=

We may therefore model the line with the following
simple equivalent circuit

s R.
—W

v (1) = %

(o)
-/
N

oY
A

Since i, = ¢ ", the excited voltage wave has an
amplitude of

Z
T 0 Vs

It's surprising that the voltage on the line is not equal to
the source voltage J
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Example 1 (cont)

- .

# The voltage on the line is a delayed version of the
source voltage

v Zo v(z,t ={/v)
’ ZO + Rs
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