EECS 117

Lecture 1: Transmission Lines

Prof. Niknejad

University of California, Berkeley

First Trans-Atlantic Cable

- Problem: A long cable the trans-atlantic telephone cable – is laid out connecting NY to London. We would like analyze the electrical properties of this cable.
- For simplicity, assume the cable has a uniform cross-sectional configuration (shown as two wires here)

Trans-Atlantic Cable Analysis

- Can we do it with circuit theory?
- Fundamental problem with circuit theory is that it assumes that the speed of light is infinite. So all signals are in phase: $V(z) = V(z + \ell)$
- Consequently, all variations in space are ignored: $\frac{\partial}{\partial z} \rightarrow 0$
- This allows the *lumped* circuit approximation.

Lumped Circuit Properties of Cable

Shorted Line: The long loop has *inductance* since the magnetic flux ψ is not negligible (long cable) ($\psi = LI$)

• Open Line: The cable also has substantial capacitance (Q = CV)

Sectional Model (I)

- So do we model the cable as an inductor or as a capacitor? Or both? How?
- Try a distributed model: Inductance and capacitance occur together. They are intermingled.

- Can add loss (series and shunt resistors) but let's keep it simple for now.
- Add more sections and solution should converge

Sectional Model (II)

- More sections → The equiv LC circuit represents a smaller and smaller section and therefore lumped circuit approximation is more valid
- This is an easy problem to solve with SPICE.
- But the people 1866 didn't have computers ... how did they analyze a problem with hundreds of inductors and capacitors?

Distributed Model

- Go to a fully distributed model by letting the number of sections go to infinity
- Define inductance and capacitance per unit length $L' = L/\ell$, $C' = C/\ell$
- For an infinitesimal section of the line, circuit theory applies since signals travel instantly over an infinitesimally small length

KCL and KVL for a small section

• KCL:
$$i(z) = \delta z C' \frac{\partial v(z)}{\partial t} + i(z + \delta z)$$

• KVL:
$$v(z) = \delta z L' \frac{\partial i(z+\delta z)}{\partial t} + v(z+\delta z)$$

• Take limit as $\delta z \to 0$

 $\delta z \rightarrow 0$

We arrive at "Telegrapher's Equatins"

$$\lim_{\delta z \to 0} \frac{i(z) - i(z + \delta z)}{\delta z} = -\frac{\partial i}{\partial z} = C' \frac{\partial v}{\partial t}$$
$$\lim_{\delta z \to 0} \frac{v(z) - v(z + \delta z)}{\delta z} = -\frac{\partial v}{\partial z} = L' \frac{\partial i}{\partial t}$$

Derivation of Wave Equations

We have two coupled equations and two unkowns (i and v) ... can reduce it to two de-coupled equations:

$$\frac{\partial^2 i}{\partial t \partial z} = -C' \frac{\partial^2 v}{\partial t^2} \qquad \qquad \frac{\partial^2 v}{\partial z^2} = -L' \frac{\partial^2 i}{\partial z \partial t}$$

note order of partials can be changed (at least in EE)

$$\frac{\partial^2 v}{\partial z^2} = L'C'\frac{\partial^2 v}{\partial t^2}$$

Same equation can be derived for current:

$$\frac{\partial^2 i}{\partial z^2} = L'C'\frac{\partial^2 i}{\partial t^2}$$

The Wave Equation

We see that the currents and voltages on the transmission line satisfy the one-dimensional wave equation. This is a partial differential equation. The solution depends on boundary conditions and the initial condition.

Wave Equation Solution

Consider the function $f(z,t) = f(z \pm vt) = f(u)$:

It satisfies the wave equation!

Wave Motion

• General voltage solution: $v(z,t) = f^+(z-vt) + f^-(z+vt)$

• Where
$$v = \sqrt{\frac{1}{LC}}$$

Wave Speed

Speed of motion can be deduced if we observe the speed of a point on the aveform

 $z \pm vt = \text{constant}$

To follow this point as time elapses, we must move the z coordinate in step. This point moves with velocity

$$\frac{dz}{dt} \pm v = 0$$

- This is the speed at which we move with speed $\frac{dz}{dt} = \pm v$
- \bullet v is the velocity of wave propagation

Current / Voltage Relationship (I)

Since the current also satisfies the wave equation

$$i(z,t) = g^+(z - vt) + g^-(z + vt)$$

Recall that on a transmission line, current and voltage are related by

$$\frac{\partial i}{\partial z} = -C' \frac{\partial v}{\partial t}$$

For the general function this gives

$$\frac{\partial g^+}{\partial u} + \frac{\partial g^-}{\partial u} = -C'\left(-v\frac{\partial f^+}{\partial u} + v\frac{\partial f^-}{\partial u}\right)$$

Current / Voltage Relationship (II)

Since the forward waves are independent of the reverse waves

Within a constant we have

$$g^+ = rac{f^+}{Z_0}$$
 $g^- = -rac{f^-}{Z_0}$
nere $Z_0 = \sqrt{rac{L'}{C'}}$ is the "Characteristic Impedance"

• Where $Z_0 = \sqrt{\frac{L'}{C'}}$ is the "Characteristic Impedance" of the line

Example: Step Into Infinite Line

- Excite a step function onto a transmission line
- The line is assumped uncharged: Q(z,0) = 0, $\psi(z,0) = 0$ or equivalently v(z,0) = 0 and i(z,0) = 0
- By physical intuition, we would only expect a forward traveling wave since the line is infinite in extent
- The general form of current and voltage on the line is given by

$$v(z,t) = v^{+}(z - vt)$$
$$i(z,t) = i^{+}(z - vt) = \frac{v^{+}(z - vt)}{Z_{0}}$$

• The T-line looks like a resistor of Z_0 ohms!

Example 1 (cont)

We may therefore model the line with the following simple equivalent circuit

Since $i_s = i^+$, the excited voltage wave has an amplitude of

$$v^+ = \frac{Z_0}{Z_0 + R_s} V_s$$

It's surprising that the voltage on the line is not equal to the source voltage

Example 1 (cont)

The voltage on the line is a delayed version of the source voltage

