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First Trans-Atlantic Cable

Problem: A long cable – the trans-atlantic telephone
cable – is laid out connecting NY to London. We would
like analyze the electrical properties of this cable.

For simplicity, assume the cable has a uniform
cross-secitonal configuration (shown as two wires here)

VNY (t)

RNY

RLondon
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Trans-Atlantic Cable Analysis

Can we do it with circuit theory?

Fundamental problem with circuit theory is that it
assumes that the speed of light is infinite. So all signals
are in phase: V (z) = V (z + ℓ)

Consequently, all variations in space are ignored:
∂

∂z
→ 0

This allows the lumped circuit approximation.
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Lumped Circuit Properties of Cable

Shorted Line: The long loop has inductance since the
magnetic flux ψ is not negligible (long cable) (ψ = LI)

ψ

I

I

Open Line: The cable also has substantial capacitance
(Q = CV )
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Sectional Model (I)

So do we model the cable as an inductor or as a
capacitor? Or both? How?

Try a distributed model: Inductance and capacitance
occur together. They are intermingled.

L L L L

C C C C C

Can add loss (series and shunt resistors) but let’s keep
it simple for now.

Add more sections and solution should converge
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Sectional Model (II)

More sections → The equiv LC circuit represents a
smaller and smaller section and therefore lumped
circuit approximation is more valid

This is an easy problem to solve with SPICE.

But the people 1866 didn’t have computers ... how did
they analyze a problem with hundreds of inductors and
capacitors?
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Distributed Model

L′ L′ L′ L′

C ′ C ′ C ′ C ′ C ′

L = δzL′

C = δzC ′

δz

Go to a fully distributed model by letting the number of
sections go to infinity

Define inductance and capacitance per unit length
L′ = L/ℓ, C ′ = C/ℓ

For an infinitesimal section of the line, circuit theory
applies since signals travel instantly over an
infinitesimally small length
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KCL and KVL for a small section

KCL: i(z) = δzC ′ ∂v(z)
∂t

+ i(z + δz)

KVL: v(z) = δzL′ ∂i(z+δz)
∂t

+ v(z + δz)

Take limit as δz → 0

We arrive at “Telegrapher’s Equatins”

lim
δz→0

i(z) − i(z + δz)

δz
= −

∂i

∂z
= C ′

∂v

∂t

lim
δz→0

v(z) − v(z + δz)

δz
= −

∂v

∂z
= L′

∂i

∂t
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Derivation of Wave Equations

We have two coupled equations and two unkowns (i
and v) ... can reduce it to two de-coupled equations:

∂2i

∂t∂z
= −C ′

∂2v

∂t2
∂2v

∂z2
= −L′

∂2i

∂z∂t

note order of partials can be changed (at least in EE)

∂2v

∂z2
= L′C ′

∂2v

∂t2

Same equation can be derived for current:

∂2i

∂z2
= L′C ′

∂2i

∂t2
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The Wave Equation

We see that the currents and voltages on the transmission
line satisfy the one-dimensional wave equation. This is a
partial differential equation. The solution depends on
boundary conditions and the initial condition.

∂2i

∂z2
= L′C ′

∂2i

∂t2
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Wave Equation Solution

Consider the function f(z, t) = f(z ± vt) = f(u):

∂f

∂z
=
∂f

∂u

∂u

∂z
=
∂f

∂u

∂2f

∂2z
=
∂2f

∂u2

∂f

∂t
=
∂f

∂u

∂u

∂t
= ±v

∂f

∂u

∂2f

∂t2
= ±v

∂

∂u

(

∂f

∂t

)

= v2∂
2f

∂u2

∂2f

∂z2
=

1

v2

∂2f

∂t2

It satisfies the wave equation!
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Wave Motion

f(z − vt)

z

z

f(z + vt)

General voltage solution: v(z, t) = f+(z− vt)+ f−(z+ vt)

Where v =
√

1
LC
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Wave Speed

Speed of motion can be deduced if we observe the
speed of a point on the aveform

z ± vt = constant

To follow this point as time elapses, we must move the z
coordinate in step. This point moves with velocity

dz

dt
± v = 0

This is the speed at which we move with speed dz

dt
= ±v

v is the velocity of wave propagation
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Current / Voltage Relationship (I)

Since the current also satisfies the wave equation

i(z, t) = g+(z − vt) + g−(z + vt)

Recall that on a transmission line, current and voltage
are related by

∂i

∂z
= −C ′

∂v

∂t

For the general function this gives

∂g+

∂u
+
∂g−

∂u
= −C ′

(

−v
∂f+

∂u
+ v

∂f−

∂u

)
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Current / Voltage Relationship (II)

Since the forward waves are independent of the reverse
waves

∂g+

∂u
= C ′v

∂f+

∂u

∂g−

∂u
= −C ′v

∂f−

∂u

Within a constant we have

g+ =
f+

Z0
g− = −

f−

Z0

Where Z0 =
√

L′

C′ is the “Characteristic Impedance” of

the line
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Example: Step Into Infinite Line

Excite a step function onto a transmission line

The line is assumped uncharged: Q(z, 0) = 0,
ψ(z, 0) = 0 or equivalently v(z, 0) = 0 and i(z, 0) = 0

By physical intuiition, we would only expect a forward
traveling wave since the line is infinite in extent

The general form of current and voltage on the line is
given by

v(z, t) = v+(z − vt)

i(z, t) = i+(z − vt) =
v+(z − vt)

Z0

The T-line looks like a resistor of Z0 ohms!
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Example 1 (cont)

We may therefore model the line with the following
simple equivalent circuit

Rs

Z0

is i+ =
v+

Z0

Vs

Since is = i+, the excited voltage wave has an
amplitude of

v+ =
Z0

Z0 +Rs

Vs

It’s surprising that the voltage on the line is not equal to
the source voltage
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Example 1 (cont)

The voltage on the line is a delayed version of the
source voltage

v(z, t = ℓ/v)
Vs

Z0

Z0 +Rs

z
ℓ

v

University of California, Berkeley EECS 117 Lecture 1 – p. 18/18


	First Trans-Atlantic Cable
	Trans-Atlantic Cable Analysis
	Lumped Circuit Properties of Cable
	Sectional Model (I)
	Sectional Model (II)
	Distributed Model
	KCL and KVL for a small section
	Derivation of Wave Equations
	The Wave Equation
	Wave Equation Solution
	Wave Motion
	Wave Speed
	Current / Voltage Relationship (I)
	Current / Voltage Relationship (II)
	Example: Step Into Infinite Line
	Example 1 (cont)
	Example 1 (cont)

