
Problem Set 5 Due Tuesday March 9, 2004

- 1. Problem 4-31
- 2. Problem 4-33
- 3. Problem 4-37
- 4. (Cheng) What are the boundary conditions that must be satisfied by the electric potential at an interface between two perfect dielectrics with dielectric constants ϵ_1 and ϵ_2 .
- 5. (Cheng) Assuming the earth to be a large conducting sphere (radius = 6.37×10^3 km) surrounded by air, find (a) the capacitance of earth and (b) the maximum charge that can be placed onto earth before the air breaks down.
- 6. (Cheng) A capacitor consists of two concentric spherical shells of radii R_i and R_o . The space between them is filled with a dielectric of relative permittivity ϵ_r from R_i to R_b ($R_i < R_b < R_o$) and another dielectric of relative permittivity $2\epsilon_r$ from R_b to R_o .
 - (a) Determine **E** and **D** everywhere in terms of an applied voltage V_0 .
 - (b) Determine the capacitance.
- 7. (Cheng) The two parallel conducting wires of a power transmission line have a radius a and are spaced at a distance d apart. The wires are at a height h above ground. Assuming the ground to be perfectly conducting and both d and h to be much large than a, find the expressions for the mutual and self capacitances per unit length.
- 8. (Cheng) A parallel-plate capacitor of width w, length ℓ , and separate d is partially filled with a dielectric medium of dielectric constant ϵ_r , as shown below. A battery of V_0 volts is connected between the plates.
 - (a) Find **D**, **E**, and ρ_s in each region.
 - (b) Find the distance x such that the electrostatic energy stored in each region is the same.

