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Announcements 

l  Pick up Midterm 1 if you haven’t already! 
l  Two options: (1) from my office hours, or (2) from 

lecture today 

University of California, Berkeley 
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MOSFET Cross Section 

l  Add two junctions around MOS capacitor 
l  The regions forms PN junctions with substrate 
l  MOSFET is a four terminal device 
l  The body is usually grounded (or at a DC potential) 
l  For ICs, the body contact is at surface 
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MOSFET Layout 

l  Planar process:  complete structure can be specified 
by a 2D layout 

l  Design engineer can control the transistor width W 
and L 

l  Process engineer controls tox, Na, xj, etc. 
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PMOS & NMOS 

l  A MOSFET by any other name is still a MOSFET: 
–  NMOS, PMOS, nMOS, pMOS 
–  NFET, PFET 
–  IGFET 
–  Other flavors:  JFET, MESFET 

l  CMOS technology:  The ability to fabricate NMOS 
and PMOS devices simultaneously 
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CMOS 

l  Complementary MOS (CMOS):  Both P and N type devices 
l  Create a n-type body in a p-type substrate through 

compensation.  This new region is called a “well”. 
l  To isolate the PMOS from the NMOS, the well must be 

reverse biased (p-n junction) 
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Circuit Symbols 

l  The symbols with the arrows are typically used in 
analog applications 

l  The body contact is often not shown  
l  The source/drain can switch depending on how the 

device is biased (the device has inherent symmetry) 
University of California, Berkeley 
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Circuits! 

l  When the inventors of the bipolar transistor first 
got a working device, the first thing they did was to 
build an audio amplifier to prove that the transistor 
was actually working! 

University of California, Berkeley 
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A Simple Circuit:  An MOS Amplifier 

University of California, Berkeley 
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Plot of Output Waveform (Gain!) 
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Observed Behavior:  ID-VGS 

l  Current zero for negative gate voltage 
l  Current in transistor is very low until the gate 

voltage crosses the threshold voltage of device 
(same threshold voltage as MOS capacitor) 

l  Current increases rapidly at first and then it finally 
reaches a point where it simply increases linearly 

University of California, Berkeley 

GSV

DSI

TV

GSV

DSI
DSV



EE 105 Spring 2017 Prof. A. M. Niknejad 
Prof. Rikky Muller 

12 

Observed Behavior:  ID-VDS 

l  For low values of drain voltage, the device is like a resistor 
l  As the voltage is increases, the resistance behaves non-linearly 

and the rate of increase of current slows 
l  Eventually the current stops growing and remains essentially 

constant (current source) 
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Operating Points 

l  Which bias voltages you operate the MOSFET at will make a 
big difference in how it functions. 

l  We will explore these regions of operation in this lecture. 
l  If we operate with a sufficiently high VGS AND a sufficiently 

high VDS, we can make a very good small-signal amplifier! 
University of California, Berkeley 
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Small Signal vs. Large Signal 

l  We observe IDS vs. VGS to be quadratic for VGS > VT 

l  Large changes in vGS result in quadratic changes at the output  
l  However, for small changes in vGS (denoted as vgs) will 

produce linear changes at the output!  
l  We can show this using Taylor series expansion: 
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Simple Small Signal Model for MOSFET 

l  This is a simplified, 3-terminal small-signal model for a 
MOSFET 

l  In later lectures we will develop a more complete model 
l  gm = transconductance  

–  defined as dids/dvgs, units [Ohms]-1
 

l  ro = output resistance  
–  defined as [dids/dvds]-1, units Ohms 

University of California, Berkeley 
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Small Signal Gain Example 

University of California, Berkeley 
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l  Steps to analyze small signal amplifiers: 
l  1. Calculate bias points using DC sources 

–  As you will see in later lecture, you will use these bias points to 
determine the MOSFET region of operation as well as to calculate 
small-signal parameters 

l  2. Turn off DC sources 
l  3. Plug in the small-signal model for a MOSFET 
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Small Signal Gain Example 

University of California, Berkeley 

l  4. Calculate the gain (vout/vin) of the circuit 
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Cut-off, VGS < VT 

l  This structure should look familiar! It is an MOS 
capacitor with two n+ diffusion regions on each side. 

l  When VGS < VT, the device is either in accumulation 
or in depletion. 

l  Since there are no (or few) inversion charges at the 
surface, therefore no current will flow regardless of 
the value of VDS. University of California, Berkeley 
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“Linear” Region Current 

l  If the gate is biased above threshold, the surface is inverted 
l  This inverted region forms a channel of inversion charges 

(in this case electrons) that connects the drain and source – 
inversion charges originate from n+ diffusion  

l  If a drain-source voltage (VDS) is applied positive, electrons 
will flow from source to drain 

l  Note: electrons flow S à D, current flows D à S 
University of California, Berkeley 
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MOSFET “Linear” Region 

l  The current in this channel is given by 

l  The charge proportional to the voltage applied 
across the oxide over threshold 

l  If the channel is uniform density, only drift current 
flows 

University of California, Berkeley 
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MOSFET:  Variable Resistor 

l  Notice that in the linear region, the current is 
proportional to the voltage 

l  Can define a voltage-dependent resistor 

l  This is a nice variable resistor, electronically 
tunable! 
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Finding ID = f (VGS, VDS) 
l  Approximate inversion charge QN(y):  drain 

voltage is higher than the source à less charge at 
drain end of channel 
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Inversion Charge at Source/Drain 

University of California, Berkeley 
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Average Inversion Charge 

l  Charge at drain end is lower since the vertical field 
is lower at that point 
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Drift Velocity and Drain Current 

University of California, Berkeley 
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Square-Law Characteristics 

University of California, Berkeley 
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The Saturation Region 

University of California, Berkeley 

When VDS > VGS – VTn, there isn’t any inversion 
charge at the drain … what happens? 
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Why does current saturate? 

l  The charge at drain end goes to zero once VGD < VT 

l  We say that the drain end is “pinched off” 
–  If you pinch a hose, water flow stops ! 
–  But then how does current flow? 

University of California, Berkeley 
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Pinch Off 

l  Excess field beyond Edsat drops across tiny region 
between drain and channel 
–  Huge field means that electrons flow at very high 

velocity across the “high field” region. 
–  They are injected from source end and are collected at 

the drain end 
l  Increasing the drain voltage does not increase 

current (appreciably) because the current is limited 
by the supply of electrons from channel side 

University of California, Berkeley 
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Square-Law Current in Saturation 

University of California, Berkeley 
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Actual Saturation Current 
l  Measurement:  ID increases slightly with increasing VDS: 
l  The physics is complicated, but a simple way to see this is that 

the channel is getting shorter as the drain voltage depletes away 
more electrons from the drain end 

l  We model this with an additional linear factor: 
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Channel Length Modulation 
l  When vDS = vGS-VT, the channel pinches off near the drain. With 

further increase in vDS, the pinch-off point moves toward the 
source, effectively reducing the channel length from L to L-ΔL. 
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Summary: Regions of Operation 

l  Cut-off: VGS < VT 
–  IDS = 0 
–  Note: this is an approximation we will make in EE105, in later 

courses you will learn about sub-threshold conduction 

l  Linear: VGS > VT, VDS << VGS – VT 

l  Triode: VGS > VT, VDS < VGS – VT 
 
 

l  Saturation: VGS > VT, VDS > VGS – VT 
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PMOS Device 

l  So far, we’ve derived all of our equations for an 
NMOS device 

l  PMOS devices work exactly the same way, but 
with an n-type body and a channel made of positive 
charges (holes) 

l  The direction of the voltages and currents are 
inverted, for example: 
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Next Lecture 

l  In the next lecture we will learn how to analyze 
small-signal amplifiers, including 
–  Computation of bias points 
–  How to derive and compute small signal model 

parameters (gm, ro) 
–  How to calculate small signal gain 

University of California, Berkeley 


