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What is a pn-junction?
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Module 2.3 Outline

o Part 1: Carrier concentration variation and
potential

— Show that any time there’s a variation in carrier
concentration, then at thermal equilibrium there must be
a variation in potential

o Part2: Apply this to a pn-junction at thermal
equilibrium
— Extend result to a reverse biased junction

o Part 3: Look at a forward biased pn-junction
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Carrier Concentration and Potential

e In thermal equilibrium, there are no external fields
and we thus expect the electron and hole current

densities to be zero: ,
Dfif b = Ohm g Lam

J =0=gn,u E,+qD an,
n Y= 0/n™—0 no 4, (D;ﬁc‘ﬂ‘?ﬂ
K_dy\/ \'\Pa(-_ﬁvt'w‘.

dn, (4, noEo=(ijno%
dc | D KT ) dx

n
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Carrier Concentration and Potential (2)

o We have an equation relating the potential to the
carrier concentration

kT \dn dan
d¢0:( j == th_o

qg ) n N
o If we integrate the above equation we have

b, ()~ (x) = V,, In o)

1y (X))

o We define the potential reference to be intrinsic Si:

D(x) =01 ny(x))=n
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Carrier Concentration Versus Potential

e The carrier concentration is thus a function of
potential - LT
=)

o (heck that for zero potential, we have intrinsic
carrier concentration (refereﬁ‘é@))

e arrive at

a sintar equation N
(_(5(0>:—0/\/ 2 (x) = nie_¢0(x)/Vth

o Note that the law of mass action 1s upheld

1y (X) py (x) = nle W gh™ i — 52

University of California, Berkeley



EE 105 Fall 2016 Prof. A. M. Niknejad

The Doping Changes Potential

o Due to the log nature of the potential, the potential changes
linearly for exponential increase 1n doping:

6,0 =V, In 22 _o26mv 10 ) L 26mv In1010g )

n;(x,) n;(x,) 10"
n, (x
¢, (x) ~ 60mV log 100(10)

&, (x) ~ —60mV log 1; 0 (%)

010

e Quick calculation aid: For a p-type concentration of 10'¢
cm, the potential is -360 mV

o N-type materials have a positive potential with respect to
intrinsic Si

University of California, Berkeley
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PN Junctions: Overview

The most important device 1s a junction
between a p-type region and an n-type region

When the junction is first formed, due to the
concentration gradient, mobile charges
transfer near junction

Electrons leave n-type region and holes leave
p-type region
These mobile carriers become minority

carriers in new region (can’t penetrate far due
to recombination)

Due to charge transfer, a voltage difference
occurs between regions

This creates a field at the junction that causes
drift currents to oppose the diffusion current

In thermal equilibrium, drift current and
diffusion must balance

p-type
NA

IR

+++++ | T
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PN Junction Currents
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o Consider the PN junction in thermal equilibrium

o Again, the currents have to be zero, so we have

10

d,
J =0=qn,u E,+qD, o
dx
dan
qI/ZOIUnEO — _an :
dx
dn
D kT 1 dn,
E, = =—
U, q n, dx
dp,
Poae kT 1 dp,
E, = = —
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PN Junction Fields

p-type + n-type
—~ 4
Na T Np
NAp.O =N, | ‘wx)
Mr\arih |
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Total Charge in Transition Region

e To solve for the electric fields, we need to write
down the charge density 1n the transition region:
‘(_ -
Po(X) =q(py—ny+N,—N,)
N~ ~N—
kﬁo&rw d.opan h13
e In the p-side of the junction, there are very few
electrons and only acceptors:

py(X)=q(py—N,)  —X,0<x<0

o Since the hole concentration 1s decreasing on the p-
side, the net charge 1s negative:

Na>p0 IOO(X)<O
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Charge on N-Side

o Analogous to the p-side, the charge on the n-side 1s
given by:

Po(x)=q(—n,+N,) O<x<x,

o The net charge here 1s positive since:

N, >n, Po(x)>0
A n, =N,
2 ) 'Ildiﬁ
l’lo 2]’:[—1 EO%
—

13 Transition Region
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“Exact” Solution for Fields

o Given the above approximations, we now have an
expression for the charge density

- Soed
_|g(ne ¢0(x) )ixpo <x<0
Po(x) = HTY

q(N,—n, O<x<x,
o We also have the following result from
electrostatics T
- V-E=-3
dx” £,

dx

F 5| ¢
o Notice that the ﬁt@tfal%%pears on ll:ﬂﬂlﬁldﬂts—ﬁ'f;j

the equation... difficult problem to solve
o A much simpler way to solve the problem...

14
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Depletion Approximation

o Let’s assume that the transition region 1s
completely depleted of free carriers (only immobile

dopants exist) § )‘(“’ §
Po nuo

o Then the charge density is given by ~X_ 3
Po(X) = {_ P \4”»%

+gN, 0<x<x,

e The solution for electric field 1s now easy
dEo :'po(x) /
dx g,
E,(x)=| po(x)dx'+E0(—
~po &

S

15



Prof. A. M. Niknejad

Depletion Approximation (2)

EE 105 Fall 2016

o Since charge density 1s a constant

Eo(x):j'_"x | POEX)dxv:_q‘iVa (x+x,,)

A S

o If we start from the n-side we get the following
result

Xn0 x' | N
%): [ 2 g By ()= L 35,20y ()

Field zero outside _ gN, B
transition region £ (x) = (X, —X)

N
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Plot of Fields In Depletion Region

«—Depletion —»!
. Region |

gN,

E (x)=-

(x,0 —X)

By =% (e, |
s -,

v

o E-Field zero outside of depletion region

o Note the asymmetrical depletion widths

o Which region has higher doping?

o Slope of E-Field larger in n-region. Why?

o Peak E-Field at junction. Why continuous?
17
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Continuity of E-Field Across Junction

o Recall that E-Field diverges on charge. For a sheet
charge at the interface, the E-field could be
discontinuous

e In our case, the depletion region 1s only populated
by a background density of fixed charges so the E-
Field 1s continuous

o What does this imply?

_qNa qu

X,, ==

E'(x=0)=

X, :Ef(x=O)

gS
(g =N |

o Total fixed charge in|n-regiorf €quals fixed charge
in p-region! S&mewhagt obvious result.
18 &2: = Fp’—; ‘Er'
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Potential Across Junction

o From our earlier calculation we know that the
potential in the n-region 1s higher than p-region

o The potential has to smoothly transition from high
to low in crossing the junction

o Physically, the potential difference 1s due to the
charge transfer that occurs due to the concentration
gradient

o Let’s integrate the field to get the potential:
x  gN
p(x) = p(—x,)+ [ LT

—X 5,0
p ES

p(x)=¢, + 9N, (xﬂ +x'xp0j
g

2
19 g

(x'+x,, )dx'
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Potential Across Junction

o We arrive at potential on p-side (parabolic)

e Do integral on n-side

4 (x)= ¢, —qu

(x— an)z

o Potential must be continuous at interface (field
finite at interface)

5, (0)=9, —qu 2,

¢+

S S

=9,(0)
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Solve for Depletion Lengths

o We have two equations and two unknowns. We are
finally 1n a position to solve for the depletion

depths
N N
(1) ¢ —qu)gfp—¢ +q 3 (1P =)
<()/5 qNaxpo quxno (zﬁh(o)fE‘o(o)
X = 2gs¢bi£ Na j x = 2gs¢bi Nd
" qN, \ N, +N, - gN, \N,+N,

_P .
\SZ)V fE¢ p>” J B =h—Fp

21 — cém >Pp
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Sanity Check

e Does the above equatliyg;m_l;}lak% sep Se‘?NA

o Let’s say we dope oneside very
physically we expect the’dépldtio on
the heavily doped side tqf pprﬁach 7e1o; Ko

22
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Total Depletion Width

e The sum of the depletion widths 1s the “space
charge region”

2¢.0.. [ 1 1
Xgo =X,0 T X, —\/ €0 ( + j
q Na Nd

o This region is essentially depleted of all mobile
charge

e Due to high electric field, carriers move across
region at velocity saturated speed

Xdoz\/25;¢bi( 1 jzlu E Nll:104l

10" ST cm
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Have we invented a battery?

o Can we harness the PN junction and turn 1t into a

battery? ;
) 1
=V ln— +In In NpNy
th 1h n2
v,% l
.'L
\w

e Num ‘ﬁcz@l) example

\/ 15
N,N, Vé’dﬁ‘{vt i1 1gi

n’ 10%°

l

€ 600mv

@, =26mV In
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Contact Potential

o The contact between a PN junction creates a
potential difference

o Likewise, the contact between two dissimilar
metals creates a potential difference (proportional
to the difference between the work functions)

o When a metal semiconductor junction is formed, a
contact potential forms as well

o If we short a PN junction, the sum of the voltages
around the loop must be zero:

0=¢, + om T Do
) ¢mn1rn D+
P A Y by =8, + By
25 oy
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PN Junction Capacitor

o Under thermal equilibrium, the PN junction does
not draw any (much) current

o But notice that a PN junction stores charge in the
space charge region (transition region)

o Since the device 1s storing charge, 1t’s acfi
capacitor N

o Positive charge 1s stored in the n-regionZa
negative charge 1s in the p-region: f

@0 = quxno

V—

26
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Reverse Biased PN Junction

o What happens if we “reverse-bias” the PN
junction?

+

~9,+Vp Y =V, V,<0

e Since no current 1s flowing, the entire reverse
biased potential 1s dropped across the transition
region

o To accommodate the extra potential, the charge in
these regions must increase

o If no current 1s flowing, the only way for the charge
to increase 1s to grow (shrink) the depletion regions

27
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Voltage Dependence of Depletion Width

o Can redo the math but in the end we realize that the
equations are the same except we replace the built-
in potential with the effective reverse bias:

xn(VD):\/ZgS(¢bi_VD)( Na ]:xno _5

gN, N,+N, bi
X (V ): 28s(¢bi_VD) Nd — x _E
PP gN, N,+N, 7 bi

2¢, (¢bi - VD) 1 n 1
q Na Nd
Vo

Xd(VD) :Xdo 1——=
28 Dy

X,(Vp)= xp(VD)+xn(VD) :\/
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Charge Versus Bias

29

As we increase the reverse bias, the depletion

region grows to accommodate more charge
V

O,(Vp) = _qNaxp(VD) =—gN, 1_¢_é

Charge 1s not a linear function of voltage
This 1s a non-linear capacitor

We can define a small signal capacitance for small
signals by breaking up the charge into two terms

O,V +vy)=0,(V,)+q(vy)
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Derivation of Small Signal Capacitance

o Do a Taylor Series expansion:

d
0,V +v,) =0, (V) + 2| 1.
dv |,
dQ, d 7 )|
Cj:Cj(VD): dV] :W(_qNaxpO 1_:]
Vv, dv=r,
gN X,

2¢b,,/1—— ,/1——
o Notice that B Dy

co— dN. Xy _gN, | 26,4, N, |_ |95 NN,
0 20, 29, gN, N,+N, 2¢,, N, + N,

30
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Physical Interpretation of Depletion Cap

a 2¢bi N a + N d
o Notice that the expression on the right-hand-side 1s
just the depletion width 1n thermal equilibrium

-1
| |
C,o =&, c + -5
28s¢bi Na Nd XdO

o This looks like a parallel plate capacitor!

_\/qgs NaNd

C,-<VD>=X‘9(SV)

31
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A Variable Capacitor (Varactor)

o Capacitance varies versus bias: C

02

o Application: Radio Tuner

32



