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What is a pn-junction?
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Module 2.3 Outline

o Part 1: Carrier concentration variation and
potential

— Show that any time there’s a variation in carrier
concentration, then at thermal equilibrium there must be
a variation in potential

o Part2: Apply this to a pn-junction at thermal
equilibrium
— Extend result to a reverse biased junction

o Part 3: Look at a forward biased pn-junction

University of California, Berkeley
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Carrier Concentration and Potential

o In thermal equilibrium, there are no external fields
and we thus expect the electron and hole current
densities to be zero:

d
Jn — O — an/unEO +an nO

dn, (4, nOEOZ(ijno%
dc | D KT ) dx

n
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Carrier Concentration and Potential (2)

o We have an equation relating the potential to the
carrier concentration

kT \dn dan
d¢0:( j == th_o

qg ) n N
o If we integrate the above equation we have

b, ()~ (x) = V,, In o)

1y (X))

o We define the potential reference to be intrinsic Si:

9y (%)) =0 ny(x,) =n,

University of California, Berkeley
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Carrier Concentration Versus Potential

o The carrier concentration 1s thus a function of
potential

n, (x) = nie¢0(x)/Vth

o Check that for zero potential, we have intrinsic
carrier concentration (reference).

o If we do a similar calculation for holes, we arrive at
a similar equation

pO (.X) — nie_¢0(x)/Vth
o Note that the law of mass action 1s upheld

_¢0(x)/Vthe¢0(x)/Vth 2

1y (X) o (x) = e =n;

University of California, Berkeley
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The Doping Changes Potential

o Due to the log nature of the potential, the potential changes
linearly for exponential increase 1n doping:

6,0 =V, In 22 _o26mv 10 ) L 26mv In1010g )

n;(x,) n;(x,) 10"
n, (x
¢, (x) ~ 60mV log 100(10)

&, (x) ~ —60mV log 1; 0 (%)

010

e Quick calculation aid: For a p-type concentration of 10'¢
cm, the potential is -360 mV

o N-type materials have a positive potential with respect to
intrinsic Si

University of California, Berkeley
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PN Junctions: Overview

o The most important device is a junction p-type
between a p-type region and an n-type region N
A

o When the junction 1s first formed, due to the
concentration gradient, mobile charges
transfer near junction

o Electrons leave n-type region and holes leave

-t i -
. I;hzzj szogli(i)lr; carriers become minority FEEEHH

V
carriers in new region (can’t penetrate far due L
to recombination)
e Due to charge transfer, a voltage difference
occurs between regions
o This creates a field at the junction that causes Np
drift currents to oppose the diffusion current n-type

e In thermal equilibrium, drift current and
diffusion must balance
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PN Junction Currents
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o Consider the PN junction in thermal equilibrium

o Again, the currents have to be zero, so we have

10

d,
J =0=qn,u E,+qD, o
dx
dan
qI/ZOIUnEO — _an :
dx
dn
D kT 1 dn,
E, = =—
U, q n, dx
dp,
Poae kT 1 dp,
E, = = —
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PN Junction Fields

p-type n-type
Na Np
pO = Na . “pO (.X)
‘deiﬁ nl.z
N
- xPO an nO — Nd
2
n;
n, = N

a
\ 4

|__++|

11 Transition Region
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Total Charge in Transition Region

e To solve for the electric fields, we need to write
down the charge density 1n the transition region:

Po(X) = q(po =1y + Ny = N,)

o In the p-side of the junction, there are very few
electrons and only acceptors:

py(X)=q(py—N,)  —X,0<x<0

o Since the hole concentration 1s decreasing on the p-
side, the net charge 1s negative:

Na>p0 IOO(X)<O

12
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Charge on N-Side

o Analogous to the p-side, the charge on the n-side 1s
given by:

Po(x)=q(—n,+N,) O<x<x,

o The net charge here 1s positive since:

N, >n, Po(x)>0
A n, =N,
2 ) 'Ildiﬁ
l’lo 2]’:[—1 EO%
—

13 Transition Region
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“Exact” Solution for Fields

o Given the above approximations, we now have an
expression for the charge density

_Jane N, <x<0
pO(x): (N _ne(/jo(x)/Vth) O<x<x
q p ; n0

o We also have the following result from
electrostatics
dE, __d¢ _p)
dx dx? g

S

o Notice that the potential appears on both sides of
the equation... difficult problem to solve

o A much simpler way to solve the problem...

14
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Depletion Approximation

o Let’s assume that the transition region 1s
completely depleted of free carriers (only immobile
dopants exist)

e Then the charge density 1s given by

—gN, —x, <x<0
Po(x) = { g
+gN, 0<x<x,
o The solution for electric field 1s now easy

dE X
0 — '00( ) Field zero outside

dx E transition region

Eo(x):jjx O poé(‘x')dx'_l_Eo(/é)()
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Depletion Approximation (2)

EE 105 Fall 2016

o Since charge density 1s a constant

Eo(x):j'_"x | POEX)dxv:_q‘iVa (x+x,,)

A S

o If we start from the n-side we get the following
result

Xn0 x' | N
%): [ 2 g By ()= L 35,20y ()

Field zero outside _ gN, B
transition region £ (x) = (X, —X)

N

16
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Plot of Fields In Depletion Region

1

1 1
1

I — — ———— <+ |

p-type (T TERErE n-type

1
+++++!

f«—DepIetion _>
. Region |

»

N N
EO(x):_q(c’,—a(x+xp0) \/ Eo(x):_qu(xno_x)

o E-Field zero outside of depletion region

o Note the asymmetrical depletion widths

o Which region has higher doping?

o Slope of E-Field larger in n-region. Why?
o Pecak E-Field at junction. Why continuous?

17
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Continuity of E-Field Across Junction

o Recall that E-Field diverges on charge. For a sheet
charge at the interface, the E-field could be
discontinuous

e In our case, the depletion region 1s only populated
by a background density of fixed charges so the E-
Field 1s continuous

o What does this imply?

N N

E:(x=0)=—q “xpoz—q “x,, =E"(x=0)
gS gS
qNaxpo :quan

o Total fixed charge in n-region equals fixed charge
in p-region! Somewhat obvious result.

18
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Potential Across Junction

o From our earlier calculation we know that the
potential in the n-region 1s higher than p-region

o The potential has to smoothly transition from high
to low in crossing the junction

o Physically, the potential difference 1s due to the
charge transfer that occurs due to the concentration
gradient

o Let’s integrate the field to get the potential:
x  gN
p(x) = p(—x,)+ [ LT

—X 5,0
p ES

p(x)=¢, + 9N, (xﬂ +x'xp0j
g

2
19 g

(x'+x,, )dx'

X
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Potential Across Junction

o We arrive at potential on p-side (parabolic)

e Do integral on n-side

4 (x)= ¢, —qu

(x— an)z

o Potential must be continuous at interface (field
finite at interface)

5, (0)=9, —qu 2,

¢+

S S

=9,(0)

20
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Solve for Depletion Lengths

o We have two equations and two unknowns. We are
finally 1n a position to solve for the depletion

depths qN q N
9, — (1)
28S
gN X0 =gN ,x, (2)

L ea N ) es( N
v qu Na+Nd e qNa Nd+Na

Dy E¢n_¢p >0

21
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Sanity Check

o Does the above equation make sense?

o Let’s say we dope one side very highly. Then
physically we expect the depletion region width for
the heavily doped side to approach zero:

an — 11m \/28s¢bi Nd _ O M

qu Nd+Na B

: . 2 .
xp() — hm 2€S¢bl Nd — gs¢bl
Ng—»o\ gN, \ N,+ N, gN

o Entire depletion width dropped across p-region

22
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Total Depletion Width

e The sum of the depletion widths 1s the “space
charge region”

2¢.0.. [ 1 1
Xgo =X,0 T X, —\/ €0 ( + j
q Na Nd

o This region is essentially depleted of all mobile
charge

e Due to high electric field, carriers move across
region at velocity saturated speed

Xdoz\/25;¢bi( 1 jzlu E Nll:104l

10" ST cm

23
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Have we invented a battery?

o Can we harness the PN junction and turn 1t into a

battery?

b =4,~4, Vth[n%ﬂn%j VIt

* 2L
T
o Numerical example:
1591 15

@, —26mV1nN Ny 6OmV><10g101012? =600mV

]/l.

l

24
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Contact Potential

o The contact between a PN junction creates a
potential difference

o Likewise, the contact between two dissimilar
metals creates a potential difference (proportional
to the difference between the work functions)

o When a metal semiconductor junction is formed, a
contact potential forms as well

o If we short a PN junction, the sum of the voltages
around the loop must be zero:

0=¢, + om T Do
) ¢mn1rn D+
P A Y by =8, + By
25 oy
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PN Junction Capacitor

o Under thermal equilibrium, the PN junction does
not draw any (much) current

o But notice that a PN junction stores charge in the
space charge region (transition region)

o Since the device 1s storing charge, it’s acting like a
capacitor

o Positive charge is stored in the n-region, and
negative charge 1s in the p-region:

qNaxpo — quxno

26
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Reverse Biased PN Junction

o What happens if we “reverse-bias” the PN
junction?

+

~9,+Vp Y =V, V,<0

e Since no current 1s flowing, the entire reverse
biased potential 1s dropped across the transition
region

o To accommodate the extra potential, the charge in
these regions must increase

o If no current 1s flowing, the only way for the charge
to increase 1s to grow (shrink) the depletion regions

27
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Voltage Dependence of Depletion Width

o Can redo the math but in the end we realize that the
equations are the same except we replace the built-
in potential with the effective reverse bias:

xn(VD):\/ZgS(¢bi_VD)( Na ]:xno _5

gN, N,+N, bi
X (V ): 28s(¢bi_VD) Nd — x _E
PP gN, N,+N, 7 bi

2¢, (¢bi - VD) 1 n 1
q Na Nd
Vo

Xd(VD) :Xdo 1——=
28 Dy

X,(Vp)= xp(VD)+xn(VD) :\/



EE 105 Fall 2016

Prof. A. M. Niknejad

Charge Versus Bias

29

As we increase the reverse bias, the depletion

region grows to accommodate more charge
V

O,(Vp) = _qNaxp(VD) =—gN, 1_¢_é

Charge 1s not a linear function of voltage
This 1s a non-linear capacitor

We can define a small signal capacitance for small
signals by breaking up the charge into two terms

O,V +vy)=0,(V,)+q(vy)
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Derivation of Small Signal Capacitance

o Do a Taylor Series expansion:

d
0,V +v,) =0, (V) + 2| 1.
dv |,
dQ, d 7 )|
Cj:Cj(VD): dV] :W(_qNaxpO 1_:]
Vv, dv=r,
gN X,

2¢b,,/1—— ,/1——
o Notice that B Dy

co— dN. Xy _gN, | 26,4, N, |_ |95 NN,
0 20, 29, gN, N,+N, 2¢,, N, + N,

30
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Physical Interpretation of Depletion Cap

a 2¢bi N a + N d
o Notice that the expression on the right-hand-side 1s
just the depletion width 1n thermal equilibrium

-1
| |
C,o =&, c + -5
28s¢bi Na Nd XdO

o This looks like a parallel plate capacitor!

_\/qgs NaNd

C,-<VD>=X‘9(SV)

31
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A Variable Capacitor (Varactor)

o Capacitance varies versus bias: C

02

o Application: Radio Tuner

32
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Diode under Thermal Equilibrium

Minority Carrier Close to Junction

Thermal ~_, ;

Generation | P-type

n-type

G ®
0,

Jn,diff

p,diff

©
0) 0

POIOPOPOPOE DD

. @ S pari

1
ndrift i\

00,

Recombination ®j D [ 9% Carrier with energy
C below barrier height

Diffusion small since few carriers have enough energy to penetrate barrier

Drift current 1s small since minority carriers are few and far between: Only
minority carriers generated within a diffusion length can contribute current

Important Point: Minority drift current independent of barrier!
Diffusion current strong (exponential) function of barrier

34
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Reverse Bias

o« Reverse Bias causes an increases barrier to
diffusion

o Diffusion current is reduced exponentially

p-type g@ % n-type
— EaNCY-}
Y 18

L [ 0% N

_______________________

o Drift current does not change

e Net result: Small reverse current
35
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Forward Bias

o Forward bias causes an exponential increase in
the number of carriers with sufficient energy to
penetrate barrier

o Diffusion current increases exponentially

p-type n-type

T 000
O C

|
|”| ‘
5
o
CICIACICIAS)
< >
N
+
>
S

——————————————————————— ——
—

o Drift current does not change

o Net result: Large forward current
36
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Diode |-V Curve

1
10+ I,
8_
@
1,(Vy = —0) =~ of [,=1e" -1
4_
2k
10 \-8 -6 -4 -2 2 -
- E %

o Diode IV relation 1s an exponential function
o This exponential 1s due to the Boltzmann distribution of carriers versus
energy

o For reverse bias the current saturations to the drift current due to minority

carriers
37
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Minority Carriers at Junction Edges

Minority carrier concentration at boundaries of
depletion region increase as barrier lowers ...
the function 1s

p,(x=x,) _ (minority) hole conc. on n-side of barrier

Pp (x=—Xx p) (majority) hole conc. on p-side of barrier

_ e—(Barrier Energy)/ kT

P (x = xn) _ e—Q(¢B—VD)/kT
N 4

(Boltzmann’s Law)

38
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“Law of the Junction”

Minority carrier concentrations at the edges of the
depletion region are given by:

Pn (.X — xn) — NAe_CI(¢B_VD)/kT

— —Vn)/ kT
np(xz—xp)zNDe q(¢p—Vp)

Note 1: N, and N, are the majority carrier concentrations on
the other side of the junction
Note 2: we can reduce these equations further by substituting
V5, =0V (thermal equilibrium)
Note 3: assumption that p, << N, and n, << N,
39
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Minority Carrier Concentration

4V
pn()e “
p side / n side

vy

% [
npoe \ pn('x):pn0+pn0[ekT lJe

Minority Carrier
.............. ---- p,, Diffusion Length

| >
W,

The minority carrier concentration in the bulk region for
forward bias is a decaying exponential due to recombination

40
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Steady-State Concentrations

Assume that none of the diffusing holes and
electrons recombine => get straight lines ...

N
pnOe “
p side / n side
_______________________________________________________ pnO
8 e R
_I/Vp W,

41
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Diode Current Densities

v
Paoe "N
/ %(x)znpoe” —"po
dx —-x,—(=W))
_____________________________________________ )
np() ““““““““““““““““““““““““ npo _ N
N N

| dp D s
diff __ n ~
Jy ==qb, = ~—61—Wf; P [l—e”
VA
Jdlff — 1'2 Dp + Dn eqkT _1
NW NW

42



EE 105 Fall 2016 Prof. A. M. Niknejad

Fabrication of IC Diodes

cathode annode
= p+ p n+
n-well
M\ p-type

o Start with p-type substrate

e C(reate n-well to house diode

o p and n+ diffusion regions are the cathode and annode
o N-well must be reverse biased from substrate

o Parasitic resistance due to well resistance

43
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Diode Small Signal Model

e The I-V relation of a diode can be linearized

q(Vq+vq) 9Va 9V
— i 1| ] ek okl
I, +i,=1g|e l|=1le" e

2 3
X X

e =l+x+—+—+L

PARNKY

I,+i,~1, (1+Q(V‘}’€;Vd)+L j

: qv
Ip ® k—; = 8aVa

44
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Diode Capacitance

o We have already seen that a reverse biased diode
acts like a capacitor since the depletion region
grows and shrinks in response to the applied field.
The capacitance in forward bias 1s given by

s
X

dep

C. = A5 ~1.4C,

o But another charge storage mechanism comes into
play in forward bias

o Minority carriers injected into p and n regions
“stay” 1n each region for a while

o On average additional charge 1s stored in diode
45
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Charge Storage

qVy+vy)
kT

pnoe

p side o v) n side

e
‘e
.

e
0
.
0
0
0
0
*,
0
0
0
0
*,
0
0
0
.
0
0
0
0
.
‘e
0

o
.
o
.
o
.
.
.
o
.
.
o
.
o
.
.
.
o
.
o
.
.
.
o
.
.

D
D
)

s
el
<3

- % _xp xn Wn

o Increasing forward bias increases minority charge density

o By charge neutrality, the source voltage must supply equal

and opposite charge 1 ol
. o ql ,

o A detailed anal Ids: C,=——%1
etailed analysis yields ¢ =5

Time to cross junction
(or minority carrier lifetime)
46
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Diode Circuits

Rectifier (AC to DC conversion)
Average value circuit

Peak detector (AM demodulator)
DC restorer

Voltage doubler / quadrupler /...

Prof. A. M. Niknejad



