

Module 2.2: IC Resistors and Capacitors

Prof. Ali M. Niknejad Prof. Rikky Muller

IC Fabrication: Si Substrate

- Pure Si crystal is starting material (wafer)
- The Si wafer is extremely pure (~1 part in a billion impurities)
- Why so pure?
 - Si density is about 5 10²² atoms/cm³
 - Desire intentional doping from $10^14 10^18$
 - Want unintentional dopants to be about 1-2 orders of magnitude less dense $\sim 10^{12}$
- Si wafers are polished to about 700 μm thick (mirror finish)
- The Si forms the substrate for the IC

IC Fabrication: Oxide

- Si has a native oxide: SiO₂
- SiO₂ (Quartz) is extremely stable and very convenient for fabrication
- It's an insulators so it can be used for house interconnection
- It can also be used for selective doping
- SiO₂ windows are etched using photolithography
- These openings allow ion implantation into selected regions
- SiO₂ can block ion implantation in other areas

IC Fabrication: Ion Implantation

- Grow oxide (thermally)
- Add photoresist
- Expose (visible or UV source)
- Etch (chemical such as HF)
- Ion implantation (inject dopants)
- Diffuse (increase temperature and allow dopants to diffuse)

"Diffusion" Resistor

- Using ion implantation/diffusion, the thickness and dopant concentration of resistor is set by process
- Shape of the resistor is set by design (layout)
- Metal contacts are connected to ends of the resistor
- Resistor is capacitively isolation from substrate
 - Reverse Bias PN Junction!

Poly Film Resistor

- To lower the capacitive parasitics, we should build the resistor further away from substrate
- We can deposit a thin film of "poly" Si (heavily doped) material on top of the oxide
- The poly will have a certain resistance (say 10 Ohms/sq)

Ohm's Law

- Current I in terms of J_n
- Voltage V in terms of electric field

$$V = IR$$

I = JA = JtW

$$R = \frac{L}{W} \frac{1}{\sigma t} \qquad R = \frac{L}{W} \frac{\rho}{t}$$

$$R = \frac{L}{W} \frac{\rho}{t}$$

$$I = JA = JtW = \frac{\sigma tW}{L}V$$

Sheet Resistance (R_s)

- IC resistors have a specified thickness not under the control of the *circuit* designer
- Eliminate t by absorbing it into a new parameter: the *sheet resistance* (R_s)

$$R = \frac{\rho L}{Wt} = \left(\frac{\rho}{t}\right) \left(\frac{L}{W}\right) = R_{sq} \left(\frac{L}{W}\right)$$
"Number of Squares"

Using Sheet Resistance (R_s)

• Ion-implanted (or "diffused") IC resistor

Idealizations

- Why does current density J_n "turn"?
- What is the thickness of the resistor?
- What is the effect of the contact regions?

Electrostatics Review (1)

• Electric field go from positive charge to negative charge (by convention)

• Electric field lines diverge on charge

$$\nabla \cdot E = \frac{\rho}{\varepsilon}$$

- In words, if the electric field changes magnitude, there has to be charge involved!
- Result: In a charge free region, the electric field must be constant!

Electrostatics Review (2)

• Gauss' Law equivalently says that if there is a *net* electric field leaving a region, there has to be positive charge in that region:

Electric Fields are Leaving This Box!

$$\oint E \cdot dS = \frac{Q}{\varepsilon}$$

Recall:

$$\oint_{V} \nabla \cdot E \, dV = \oint_{V} \frac{\rho}{\varepsilon} \, dV = Q/\varepsilon \quad \longrightarrow \quad \oint_{V} \nabla \cdot E \, dV = \oint_{S} E \cdot dS = \frac{Q}{\varepsilon}$$

Electrostatics in 1D

• Everything simplifies in 1-D

$$\nabla \cdot E = \frac{dE}{dx} = \frac{\rho}{\varepsilon} \qquad dE = \frac{\rho}{\varepsilon} dx$$

$$E(x) = E(x_0) + \int_{x_0}^{x} \frac{\rho(x')}{\varepsilon} dx'$$

• Consider a uniform charge distribution

Electrostatic Potential

• The electric field (force) is related to the potential (energy):

$$E = -\frac{d\phi}{dx}$$

- Negative sign says that field lines go from high potential points to lower potential points (negative slope)
- Note: An electron should "float" to a high potential point:

$$F_e = qE = -e\frac{d\phi}{dx}$$

More Potential

• Integrating this basic relation, we have that the potential is the integral of the field: $\phi(x)$

$$\phi(x) - \phi(x_0) = -\int_C E \cdot d\vec{l}$$

• In 1D, this is a simple integral:

$$\phi(x) - \phi(x_0) = -\int_{x_0}^{x} E(x') dx'$$

• Going the other way, we have Poisson's equation in 1D:

$$\frac{d^2\phi(x)}{dx^2} = -\frac{\rho(x)}{\varepsilon}$$

Boundary Conditions

- Potential must be a continuous function. If not, the fields (forces) would be infinite
- Electric fields need not be continuous. We have already seen that the electric fields diverge on charges. In fact, across an interface we have:

• Field discontiuity implies charge density at surface!

IC MIM Capacitor

- By forming a thin oxide and metal (or polysilicon) plates, a capacitor is formed
- Contacts are made to top and bottom plate
- Parasitic capacitance exists between bottom plate and substrate

Review of Capacitors

- For an ideal metal, all charge must be at surface
- Gauss' law: Surface integral of electric field over closed surface equals charge inside volume

Capacitor Q-V Relation

- Total charge is linearly related to voltage
- Charge density is a delta function at surface (for perfect metals)

A Non-Linear Capacitor

- We'll soon meet capacitors that have a non-linear Q-V relationship
- If plates are not ideal metal, the charge density can penetrate into surface

What's the Capacitance?

• For a non-linear capacitor, we have

$$Q = f(V_s) \neq CV_s$$

- We can't identify a capacitance
- Imagine we apply a small signal on top of a bias voltage:

$$Q = f(V_s + v_s) \approx f(V_s) + \frac{df(V)}{dV} \bigg|_{V = V_s} v_s$$

Constant charge

• The incremental charge is therefore:

$$Q = Q_0 + q \approx f(V_s) + \frac{df(V)}{dV} \bigg|_{V = V_s} v_s$$

Small Signal Capacitance

• Break the equation for total charge into two terms:

$$q = \frac{df(V)}{dV} \bigg|_{V=V_s} v_s = C v_s$$

$$C \equiv \frac{df(V)}{dV}\bigg|_{V=V_{s}}$$

Example of Non-Linear Capacitor

• We'll see that for a PN junction, the charge is a function of the reverse bias:

• Small signal capacitance:

$$C_{j}(V) = \frac{dQ_{j}}{dV} = \frac{qN_{a}x_{p}}{2\phi_{b}} \frac{1}{\sqrt{1 - \frac{V}{\phi_{b}}}} = \frac{C_{j0}}{\sqrt{1 - \frac{V}{\phi_{b}}}}$$