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Lecture Outline

l Physics of conduction
l Semiconductors 

– Si Diamond Structure
– Bond Model 

l Intrinsic Carrier Concentration
– Doping by Ion Implantation

l Drift
– Velocity Saturation 

l Diffusion 
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Physics of Conduction
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Ohm’s Law
l One of the first things we learn as EECS majors is:

l Is this trivial?  Maybe what’s really going on is the 
following:

l In the above Taylor exansion, if the voltage is zero 
for zero current, then this is generally valid

l The range of validity (radius of convergence) is the 
important question.  It turns out to be VERY large!
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Ohm’s Law Revisited
l In Physics we learned:

l Is this also trivial?  Well, it’s the same as Ohm’s 
law, so the questions are related.  For a rectangular 
solid:

l Isn’t it strange that current (velocity) is 
proportional to Force?

l Where does conductivity come from?
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Conductivity of a Gas
l Electrical conduction is due to the motion of 

positive and negative charges
l For water with pH=7, the concentration of 

hydrogen H+ ions (and OH-) is:

l Typically, the concentration of charged carriers is 
much smaller than the concentration of neutral 
molecules

l The motion of the charged carriers (electrons, ions, 
molecules) gives rise to electrical conduction 

313323-103-107 cm106cm1002.610mole/cm10mole/L10 --- ´=´´==
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Collisions in Gas
l At a temperate T, each charged carrier will move in 

a random direction and velocity until it encounters 
a neutral molecule or another charged carrier

l Since the concentration of charged carriers is much 
less than molecules, it will most likely encounter a 
molecule

l For a gas, the molecules are widely separated (~ 10 
molecular diameters)

l After colliding with the molecule, there is some 
energy exchange and the charge carrier will come 
out with a new velocity and new direction

EECS 
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Memory Loss in Collisions
l Schematically

l Key Point:  The initial velocity and direction is lost 
(randomized) after a few collisions

Neutral
Molecule
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Application of Field
l When we apply an electric field, during each “free 

flight”, the carriers will gain a momentum of
l Therefore, after t seconds, the momentum is given 

by: 

l If we take the average momentum of all particles at 
any given time, we have:
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Random Things Sum to Zero!
l When we sum over all the random velocities of the 

particles, we are averaging over a large number of 
random variables with zero mean, the average is 
zero
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Negative and Positive Carriers
l Since current is contributed by positive and 

negative charge carriers:
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Conduction in Metals
l High conductivity of metals is due to large 

concentration of free electrons 
l These electrons are not attached to the solid but are 

free to move about the solid
l In metal sodium, each atom contributes a free 

electron: 
l From the measured value of conductivity (easy to 

do), we can back calculate the mean free time:
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A Deep Puzzle
l This value of mean free time is surprisingly long
l The mean velocity for an electron at room temperature is 

about:

l At this speed, the electron travels

l The molecular spacing between adjacent ions is only 

l Why is it that the electron is on average zooming by 10 
positively charged ions?
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Wave Nature of Electron

l The free carrier can penetrate right through positively 
charged host atoms!

l Quantum mechanics explains this! (Take Physics 117A/B)
l For a periodic arrangement of potential functions, the 

electron does not scatter.  The influence of the crystal is that 
it will travel freely with an effective mass.

l So why does it scatter at all?
EECS 
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Scattering in Metals
l At temperature T, the atoms are in random motion 

and thus upset periodicity

l Even at extremely low temperatures, the presence 
of an impurity upsets periodicity

EECS 
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Summary of Conduction

Conductivity determined by:
l Density of free charge carriers (both positive and negative)
l Charge of carrier (usually just e)
l Effective mass of carrier (different inside solid)
l Mean relaxation time (time for memory loss … usually the 

time between collisions)
– This is determined by several mechanisms, e.g.:

l Scattering by impurities
l Scattering due to vibrations in crystal
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Resistivity for a Few Materials
l Pure copper, 273K 1.56×10-6 ohm-cm
l Pure copper, 373 K 2.24×10-6 ohm-cm
l Pure germanium, 273 K 200 ohm-cm
l Pure germanium, 500 K .12 ohm-cm
l Pure water, 291 K 2.5×107 ohm-cm
l Seawater 25 ohm-cm

What gives rise to this enormous range?
Why are some materials semi-conductive?
Why the strong temp dependence?

University of California, Berkeley
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Electronic Properties of Silicon

l Silicon is in Group IV  
– Atom electronic structure: 1s22s22p63s23p2

– Crystal electronic structure:  1s22s22p63(sp)4

– Diamond lattice, with 0.235 nm bond length
l Very poor conductor at room temperature:   

why?

University of California, Berkeley
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Periodic Table of Elements

University of California, Berkeley
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The Diamond Structure

University of California, Berkeley

3sp tetrahedral bond

!

A43.5

!

A35.2



EE 105 Fall 2016 Prof. A. M. Niknejad

22

States of an Atom

l Quantum Mechanics:  The allowed energy levels 
for an atom are discrete (2 electrons can occupy a 
state since with opposite spin)

l When atoms are brought into close contact, these 
energy levels split

l If there are a large number of atoms, the discrete 
energy levels form a “continuous” band

University of California, Berkeley
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Energy Band Diagram
l The gap between the conduction and valence band 

determines the conductive properties of the material
l Metal

– Partially filled band

l Insulator 
– large band gap, ~ 8 eV

l Semiconductor
– medium sized gap, ~ 1 eV

University of California, Berkeley
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Model for Good Conductor
l The atoms are all ionized and a “sea” of electrons can 

wander about crystal:
l The electrons are the “glue” that holds the solid together
l Since they are “free”, they respond to applied fields and 

give rise to conductions

University of California, Berkeley
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Bond Model for Silicon (T=0K)

University of California, Berkeley

Silicon Ion (+4 q)

Four Valence Electrons
Contributed by each ion (-4 q)

2 electrons in each bond
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Bond Model for Silicon (T>0K)
l Some bond are broken: free electron
l Leave behind a positive ion or trap (a hole)

University of California, Berkeley
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Holes?

l Notice that the vacancy (hole) left behind can be filled by a 
neighboring electron

l It looks like there is a positive charge traveling around!
l Treat holes as legitimate particles.

University of California, Berkeley
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Yes, Holes!
l The hole represents the void after a bond is broken
l Since it is energetically favorable for nearby 

electrons to fill this void, the hole is quickly filled
l But this leaves a new void since it is more likely 

that a valence band electron fills the void (much 
larger density that conduction band electrons)

l The net motion of many electrons in the valence 
band can be equivalently represented as the motion 
of a hole 

University of California, Berkeley
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More About Holes
l When a conduction band electron encounters a 

hole, the process is called recombination
l The electron and hole annihilate one another thus 

depleting the supply of carriers
l In thermal equilibrium, a generation process 

counterbalances to produce a steady stream of 
carriers

University of California, Berkeley
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Thermal Equilibrium (Pure Si)

l Balance between generation and recombination 
determines no = po

l Strong function of temperature:  T = 300 oK

University of California, Berkeley
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Doping with Group V Elements

l P, As (group 5):  extra bonding electron … lost 
to crystal at room temperature

University of California, Berkeley
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Donor Accounting
l Each ionized donor will contribute an extra “free” 

electron
l The material is charge neutral, so the total charge 

concentration must sum to zero: 

l By Mass-Action Law:

University of California, Berkeley
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Donor Accounting (cont)
l Solve quadratic:

l Only positive root is physically valid:

l For most practical situations:
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Doping with Group III Elements
l Boron:  3 bonding electrons à one bond is 

unsaturated
l Only free hole … negative ion is immobile!

University of California, Berkeley

-



EE 105 Fall 2016 Prof. A. M. Niknejad

36

Mass Action Law

l Balance between generation and recombination:  

University of California, Berkeley
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Compensation
l Dope with both donors and acceptors: 

– Create free electron and hole!

University of California, Berkeley
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Compensation (cont.)

l More donors than acceptors:  Nd > Na

University of California, Berkeley
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Thermal Equilibrium

University of California, Berkeley

Rapid, random motion of holes and electrons at 
“thermal velocity” vth = 107 cm/s with collisions 
every τc = 10-13 s.

Apply an electric field E and charge carriers 
accelerate … for τc seconds
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Drift Velocity and Mobility

University of California, Berkeley
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Mobility vs. Doping in Silicon at 300 oK

University of California, Berkeley

Typical values:  1000=nµ 400=pµ
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Diffusion
l Diffusion occurs when there exists a concentration 

gradient
l In the figure below, imagine that we fill the left 

chamber with a gas at temperate T
l If we suddenly remove the divider, what happens?
l The gas will fill the entire volume of the new 

chamber.  How does this occur?

University of California, Berkeley
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Diffusion (cont)
l The net motion of gas molecules to the right 

chamber was due to the concentration gradient
l If each particle moves on average left or right then 

eventually half will be in the right chamber
l If the molecules were charged (or electrons), then 

there would be a net current flow
l The diffusion current flows from high 

concentration to low concentration:

University of California, Berkeley
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Diffusion Equations
l Assume that the mean free path is λ
l Find flux of carriers crossing x=0 plane
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Einstein Relation
l The thermal velocity is given by kT

University of California, Berkeley
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Total Current and Boundary Conditions

l When both drift and diffusion are present, the total 
current is given by the sum:

l In resistors, the carrier is approximately uniform 
and the second term is nearly zero

l For currents flowing uniformly through an interface 
(no charge accumulation), the field is discontinous

University of California, Berkeley
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