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Practical Op-Amps

o Linear Imperfections:
— Finite open-loop gain (A, <)
— Finite input resistance (R; <o)
— Non-zero output resistance (R, > 0)
— Finite bandwidth / Gain-BW Trade-Off

e Other (non-linear) imperfections:
— Slew rate limitations
— Finite swing
— Offset voltage
— Input bias and offset currents

— Noise and distortion
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Simple Model of Amplifier
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o Input capacitance and output capacitance are added

o Any amplifier has input capacitance due to
transistors and packaging / board parasitics

o Output capacitance is usually dominated by the
load
— Driving cables or a board trace

3 — Intrinsic capacitance of actuator
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Transfer Function

o Using the concept of impedance, it’s easy to derive
the transfer function
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Operational Transconductance Amp
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e Also known as an “OTA” — H
— If we “chop off” the output stage of an op-amp, we get
an OTA

o An OTA is essentially a G, amplifier. It has a
current output, so 1f we want to drive a load
resistor, we need an output stage (buffer)

o Many op-amps are internally constructed from an
OTA + buffer
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Op-Amp Model
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o The following mOde'l'CIOSEIY"I‘esembleS A
Of an op-amp.

o The input OTA stage drives a high Z node to
generate a very large voltage gain.

o The output buffer then can drive a low impedance
load and preserve the high voltage gain
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Op-Amp Gain / Bandwidth

o The dominant frequency response of the op-amp 1s
due to the time constant formed at the high-Z node
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o An interesting observation 1s that the gain-

bandwidth product depends on G, and C, only
o
% - P g é_ Y B =

Go — C"""KX oW = @
Cx




EE 105 Fall 2016 Prof. A. M. Niknejad

Preview: Driving Capacitive Loads

o In many situations, the load 1s capacitor rather than
a resistor

o For such cases, we can directly use an OTA (rather
than a full op-amp) and the gain / bandwidth
product are now determined by the load
capacitance
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OTA Power Consumption

o For a fixed load, the current consumption of the
OTA 1s fixed by the gain/bandwidth requirement,
assuming load dominates

C,>7C,

o G scales with current, so driving a larger
capacitance requires more power
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Gain/Bandwidth Trade-off



EE 105 Fall 2016 Prof. A. M. Niknejad

Open-Loop Frequency Response
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Bandwidth Extension

e Suppose the core amplifier 1s single pole with

bandwidth: GG/ DC Gaw
G (o) = —
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e When used feedback, the overall transfer function
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Gain / Bandwidth Product in Feedback

o Even though the bandwidth expanded by (1+7), the
gain drops by the same factor. So overall the gain-
bandwidth (GBW) product 1s constant

o The GBW product depends only the the G,, of the
op-amp and the C, internal capacitance (or load in
the case of an OTA)

= (1+T) 0
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Unity Gain Frequency

o The GBW product is also known as the unity gain
frequency. R

Co
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o To see this, consider the frequency at which the
gain drops to unity
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Unity Gain Feedback Amplifier

o An amplifier that has a feedback factor /=1, such as
a unity gain buffer, has the full GBW product
frequency range

/

(o) = o (L+T)
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Closed-Loop Op Amp
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Frequency Response of Closed-Loop
Inverting Amplifier Example
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Non-Dominant Poles

e As we have seen, poles 1n the system tend to make
an amplifier less stable. A single pole cannot do
harm since it has a maximum phase shift of 90°

e A second pole 1n the system is not affected by
feedback (prove this) and it will add phase shift as
the frequency approaches this second pole

o For this reason, non-dominant poles should be at a
much higher frequency than the unity-gain
frequency
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Positive Feedback

o Positive Feedback 1s also useful
e We can create a comparator circuit with Aysteresis

e Also, as long as 7'< 1, we can get stable gain ... instead
of reducing the gain (negative feedback), positive
feedback enhances the gain.

o In theory we can boost the gain to any desired level
simply by making T close to unity:
T'=1-¢

e ¢1s a very small number

— In practice if the gain varies over process / temperature /
voltage, then the circuit can go stable and oscillate

— Positive feedback also has a narrow-banding effect

19



EE 105 Fall 2016 Prof. A. M. Niknejad

Back to Circuit Model

o Here’s the equivalent circuit for an arppliﬁer lwith
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Circuit Interpretation

o Here we see the action of the feedback 1s to lower
the impedance seen by the G,, by the loop gain,
which expands the bandwidth by the same factor
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