


# Module 1-3: Non-Ideal Amps and Op-Amps Prof. Ali M. Niknejad Prof. Rikky Muller

Department of EECS

University of California, Berkeley

## **Feedback Control**

OK

CANCE

- Feedback is a universal way to design systems
  - Thermostat in your house Advanced Sccs
  - Cruise control / keep-in-lane technology (driver assist)
  - Walking / standing in humans

- Speed control example:
  - Set desired speed of car:  $v_{des}$
  - Measure the current speed of car:  $v_{car}$
  - Find the difference:  $v_{diff} = v_{des} v_{car}$  (this is also called the error signal)
  - Proportional scheme: Adjust car speed (accelerate) based on  $K_p v_{diff}$
  - PID control with dynamics: Use proportional, integral, and derivative of  $v_{car}$  to control speed

### **Negative Feedback Block Diagram**

• To find the transfer function, note that the error signal is a function of the input and output:  $s_{err} = s_{in} - f \cdot s_{out}$ 

$$s_{out} = G \cdot s_{err} = G \cdot (s_{in} - fs_{out})$$

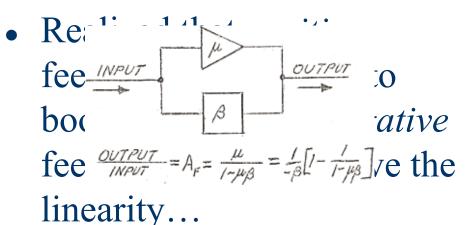
#### **Closed-Loop Transfer Function**

• Solve :

$$s_{out}(1+Gf) = G \cdot s_{in}$$

$$G_{closed} = \frac{S_{out}}{S_{in}} = \frac{G}{1 + Gf}$$

• For very large gain G, such that Gf >>1, we have


# **Electronic Feedback**

- We have already seen electronic feedback in opamps
- Example: Non-inverting amplifier
  - Resistor divider samples output voltage
  - Error signal formed at input of op-amp
  - Op-amp output is a gained version of the error signal
- Strangeness:
  - Op-amp gain is very large (ideally infinity)
  - Error signal is driven to zero
    - All practical op-amps have finite gain, so error signal is nearly zero

# **History**

THE NEW YORK TIM TURDAY, AUGUST 6, 1927. DE-MAN KROTHKE the (K+1) Rot i, (K+1) Ro [And] (in in)(R) + in R 111 HSBlack aug

- Invention of electronic negative feedback
- Inventor Harold Black was on a ferry ride to Bell Labs (1927) thinking about how to increase the gain and improve linearity of of vacuum tube amplifiers.



#### **Precision Analog**

- Feedback allows us to use a really "crappy" openloop op-amp and get good performance
  - When gain is sufficiently high, the gain is determined by the feedback network, not the open-loop gain
  - Open loop gain can vary over temperature, process, it can age, it can be highly non-linear ... In the end, if it's high enough, it does not play a role !

#### **Benefits of Feedback**

- Closed-loop gain depends on passive feedback network
  - Can set gain precisely
- Linearization
  - Op-amp transfer function is almost perfectly linear, despite using a very non-linear core amplifier
- Bandwidth enhancement (see next section)
- Interference rejection (loop can correct for unwanted signals that are injected into the signal path)



• Recall that the closed-loop transfer function is given by

$$G_{closed} = \frac{G}{1 + Gf} = \frac{G}{1 + T}$$

• For a precise transfer function, the key to feedback is to realize sufficiently high loop gain

10

#### **Noise Rejection**

• Another benefit of high loop gain is interference rejection. Imagine an unwanted signal couples into the loop as show

$$s_{out} = Gs_{err} + s_{noise} = G(s_{in} - fs_{out}) + s_{noise}$$

• The noise is rejected like 1/(1+T). Any unwanted signal, including  $s_{out} = \frac{G}{1+T}s_{in} + \frac{1}{1+T}s_{noise}$ distortion, is rejected by the loop

#### **Positive Feedback**

- Up to now we have been considering a *negative feedback* system whereby the output is *subtracted* from the input
- If we were to add the output to the input, the system would be a *positive feedback* system, which is also useful but not what we intended.
- Positive feedback systems tend to "rail out", in other words they are regenerative

12

# **Stability**

- Any real amplifier will introduce some phase shift when the input frequency increases. For example, a single-pole system has the following form
- As the frequency increases, the phase of the output signal lags the input, asymptotically up to 90°.
- When the system has more poles, the phase shift can reach 180°. What happens to

$$G(j\omega) = \frac{1}{1 + j\omega\tau}$$

 $\angle [G(j\omega)] = -\arctan(j\omega\tau)$ 

# Instability

- If the loop gain has a phase shift of 180°, then our negative feedback system appears like a positive feedback system at frequency  $T = G(j\omega_x)f = -1$
- Since there is always noise and disturbances in the system at this frequency in the system, this noise is regenerated and potentially can cause problems if |T| > 1.
- The condition for stability is then to ensure that when loop gain is unity, the phase of *T* should be less than 180°
- The *phase margin* is a measure of stability. A good design should have 60° phase margin or more.

# Oscillation

- The condition  $T(\underline{j}\omega) = -1$  is in fact how we build oscillators, which are inherently unstable
- If the circuit has T = -1 at a particular frequency, then the gain at that frequency is theoretically infinite
  - Poles are imaginary axis
- Any noise or disturbance can leads to a strong oscillation at this particular frequency
  - Take EECS 142 to understand this in more detail

#### **Op-Amp Circuit as a Feedback System**

# **Practical Op-Amps**

- Linear Imperfections:
  - Finite open-loop gain ( $A_0 < \infty$ )
  - Finite input resistance ( $R_i < \infty$ )
  - Non-zero output resistance ( $R_o > 0$ )
  - Finite bandwidth / Gain-BW Trade-Off
- Other (non-linear) imperfections:
  - Slew rate limitations
  - Finite swing
  - Offset voltage
  - Input bias and offset currents
  - Noise and distortion

17

#### **Simple Model of Amplifier**

- Input capacitance and output capacitance are added
- Any amplifier has input capacitance due to transistors and packaging / board parasitics
- Output capacitance is usually dominated by the load
  - Driving cables or a board trace
- Intrinsic capacitance of actuator

#### **Transfer Function**

• Using the concept of impedance, it's easy to derive the transfer function

# **Operational Transconductance Amp**

- Also known as an "OTA"
  - If we "chop off" the output stage of an op-amp, we get an OTA
- An OTA is essentially a  $G_m$  amplifier. It has a current output, so if we want to drive a load resistor, we need an output stage (buffer)
- Many op-amps are internally constructed from an OTA + buffer



- The following model closely resembles the insides of an op-amp.
- The input OTA stage drives a high Z node to generate a very large voltage gain.
- The output buffer then can drive a low impedance load and preserve the high voltage gain

# **Op-Amp Gain / Bandwidth**

• The dominant frequency response of the op-amp is due to the time constant formed at the high-Z node

$$G = G_m R_o$$
$$\omega_{-3dB} = \frac{1}{R_o C_x}$$

• An interesting observation is that the gainbandwidth product depends on  $G_{\rm m}$  and  $C_{\rm x}$  only

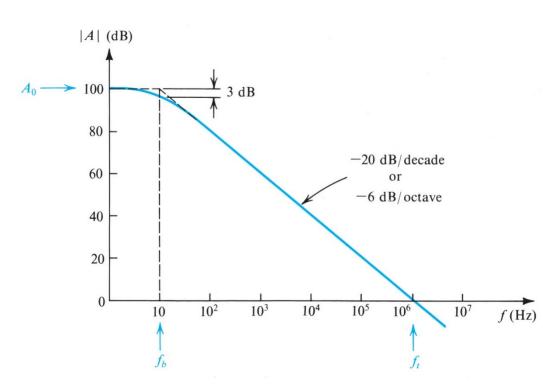
$$G \times \omega_{-3dB} = \frac{G_m}{C_x}$$

# **Preview: Driving Capacitive Loads**

- In many situations, the load is capacitor rather than a resistor
- For such cases, we can directly use an OTA (rather than a full op-amp) and the gain / bandwidth product are now determined by the load capacitance

$$G = G_m R_o$$
$$\omega_{-3dB} = \frac{1}{R_o (C_x + C_L)}$$

# **OTA Power Consumption**


• For a fixed load, the current consumption of the OTA is fixed by the gain/bandwidth requirement, assuming load dominates

 $C_L \gg C_x$ 

•  $G_{\rm m}$  scales with current, so driving a larger capacitance requires more power

# **Gain/Bandwidth Trade-off**

# **Open-Loop Frequency Response**



$$A(j\omega) = \frac{A_0}{1 + j\omega / \omega_b}$$
  

$$A_0: \text{ dc gain}$$
  

$$\omega_b: \text{ 3dB frequency}$$
  

$$\omega_t = A_0 \omega_b: \text{ unity-gain bandwidth}$$
  
(or "gain-bandwidth product")

For high frequency,  $\omega \gg \omega_b$ 

$$A(j\omega) = \frac{\omega_t}{j\omega}$$

Single pole response with a dominant pole at  $\omega_{b}$ 

# **Bandwidth Extension**

- Suppose the core amplifier is single pole with bandwidth:  $G(j\omega) = \frac{G_0}{1+j\omega\tau} \frac{G_0}{\frac{1+j\omega\tau}{1+j\omega\tau}}$  $G_{fb}(j\omega) = \frac{G(j\omega)}{1+G(j\omega)f} = \frac{\frac{1+j\omega\tau}{1+j\omega\tau}}{1+\frac{G_0}{1+j\omega\tau}f}$
- When used feedback, the overall transfer function is given by

$$G_{fb}(j\omega) = \frac{G_0}{1 + j\omega\tau + G_0 f}$$

$$G_{fb}(s) = \frac{\frac{G_0}{1 + G_0 f}}{1 + j\omega\frac{\tau}{1 + G_0 f}} = \frac{G_{closed-loop}(0)}{1 + j\omega\frac{\tau}{1 + T}}$$

# **Gain / Bandwidth Product in Feedback**

- Even though the bandwidth expanded by (1+*T*), the gain drops by the same factor. So overall the gainbandwidth (GBW) product is constant
- The GBW product depends only the the  $G_m$  of the op-amp and the  $C_x$  internal capacitance (or load in the case of an OTA)

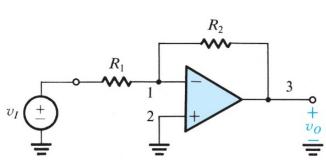
$$GBW = G \times BW = \frac{G_0}{1+T} \times (1+T) \frac{1}{R_o C_x}$$
$$GBW = G_0 \times R_o C_x = G_m R_o \times \frac{1}{R_o C_x}$$

$$GBW = \frac{G_m}{C_x}$$

# **Unity Gain Frequency**

- The GBW product is also known as the unity gain frequency.
- To see this, consider the frequency at which the gain drops to unity

$$|G| = \left| \frac{G_0}{1 + j\omega_u \tau} \right| = 1 \qquad \qquad \frac{G_0}{\sqrt{1 + \omega_u^2 \tau^2}} = 1$$


$$G_0^2 = 1 + \omega_u^2 \tau^2$$
  $\omega_u^2 = (G_0^2 - 1) / \tau^2 \approx G_0^2 / \tau^2$ 

$$\omega_u = G_0 / \tau = \frac{G_m R_o}{C_x R_o} = \frac{G_m}{C_x}$$

# **Unity Gain Feedback Amplifier**

• An amplifier that has a feedback factor *f*=1, such as a unity gain buffer, has the full GBW product frequency range

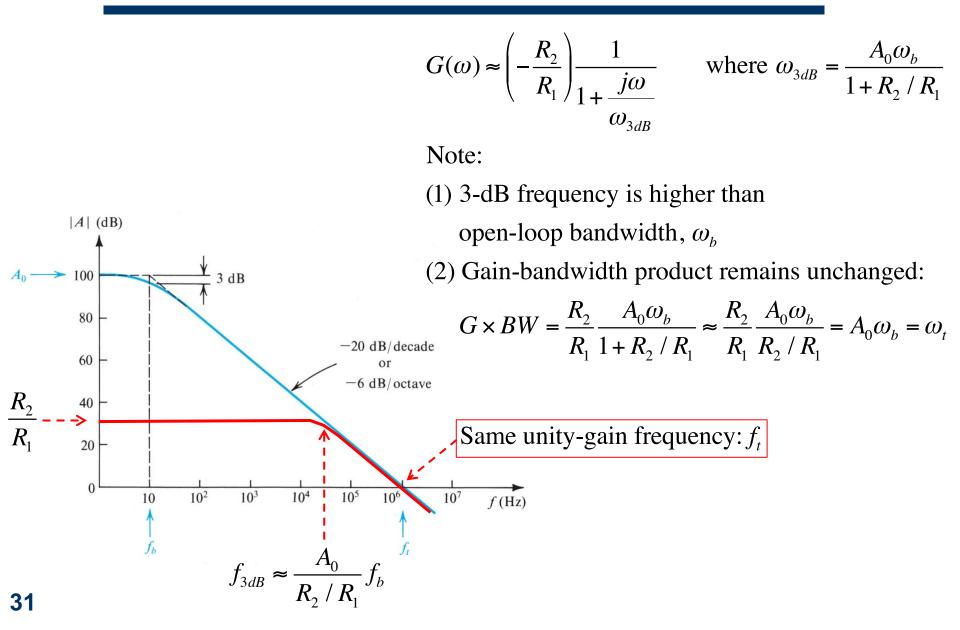
# **Closed-Loop Op Amp**



Steps to find frequency response of closed-loop amplifiers:1. Find the transfer function with finite open-loopgain. For example, for inverting amplifier:

$$G = \frac{v_o}{v_I} = \left(-\frac{R_2}{R_1}\right) \frac{1}{1 + \frac{(1 + R_2 / R_1)}{A}}$$

2. Substitute A with  $A(j\omega) = \frac{A_0}{1 + j\omega / \omega_b}$ 


3. Simplify the expression

$$G(\omega) = \left(-\frac{R_2}{R_1}\right) \frac{1}{1 + (1 + R_2 / R_1) \frac{1 + j\omega / \omega_b}{A_0}}$$
$$= \left(-\frac{R_2}{R_1}\right) \frac{1}{1 + \frac{(1 + R_2 / R_1)}{A_0} + \frac{j\omega}{\left(\frac{A_0 \omega_b}{1 + R_2 / R_1}\right)}}$$

#### EE 105 Fall 2016

Prof. A. M. Niknejad

#### Frequency Response of Closed-Loop<sup>Prof. A. M.</sup> Inverting Amplifier Example



# **Non-Dominant Poles**

- As we have seen, poles in the system tend to make an amplifier less stable. A single pole cannot do harm since it has a maximum phase shift of 90°
- A second pole in the system is not affected by feedback (prove this) and it will add phase shift as the frequency approaches this second pole
- For this reason, non-dominant poles should be at a much higher frequency than the unity-gain frequency

# **Positive Feedback**

- Positive Feedback is also useful
- We can create a comparator circuit with *hysteresis*
- Also, as long as T < 1, we can get stable gain ... instead of reducing the gain (negative feedback), positive feedback enhances the gain.
- In theory we can boost the gain to any desired level simply by making T close to unity:

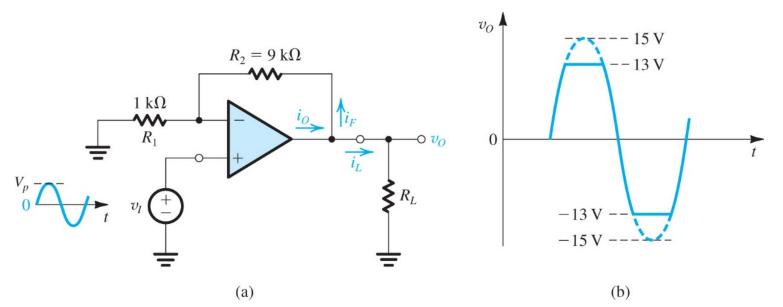
$$T = 1 - \epsilon$$

- ε is a very small number
  - In practice if the gain varies over process / temperature / voltage, then the circuit can go stable and oscillate
  - Positive feedback also has a narrow-banding effect

#### **Back to Circuit Model**

• Here's the equivalent circuit for an amplifier with feedback

# **Circuit Interpretation**


• Here we see the action of the feedback is to lower the impedance seen by the  $G_m$  by the loop gain, which expands the bandwidth by the same factor



# **Op-Amp Non-Linearities**

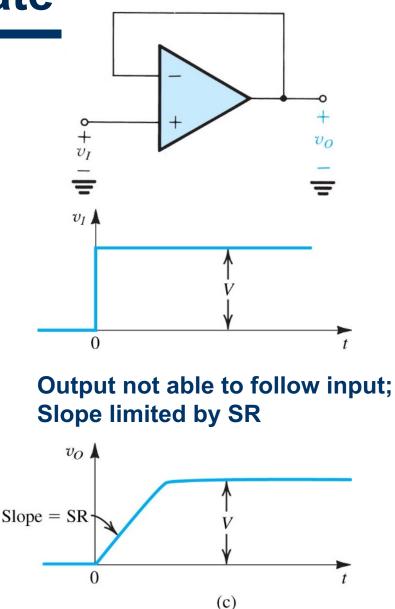
### **Output Saturation**

- The output voltage swing is limited by
  - 1. Saturation voltage (usually a volt or two lower than power supply voltage)
  - 2. Maximum output current (in case of small load resistance)
- Output waveform appears to be "clipped" when either condition happens
- Output power is limited



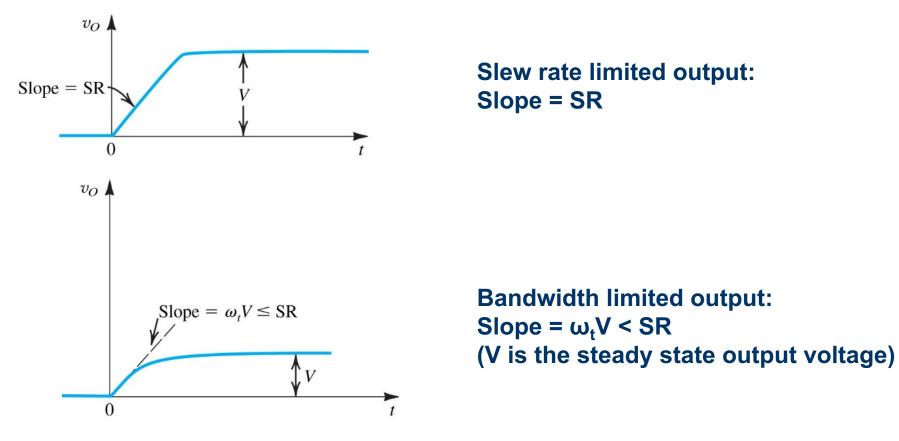
## **Slew Rate**

Amplifier output is limited by "slew rate": maxium rate of change possible at output

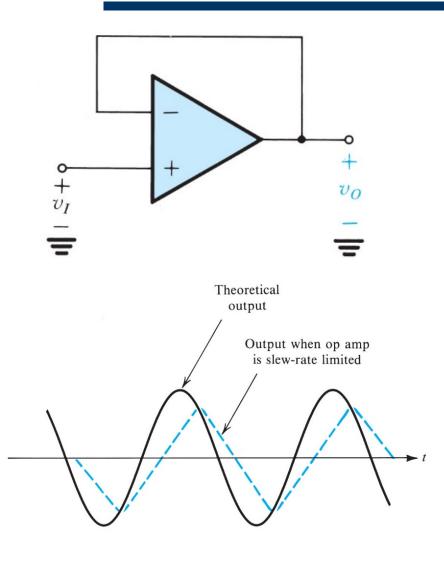

 $SR = \frac{dv_o}{dt}\bigg|_{\rm max}$ 

SR is specified in datasheet in  $V/\mu s$ .

#### Note


SR limit is different from bandwidth limit:

- Limited bandwidth is a linear phenomenon, it does not change the shape of input sinusoid
- SR limitation can cause nonlinear distortion to input sinusoidal signal



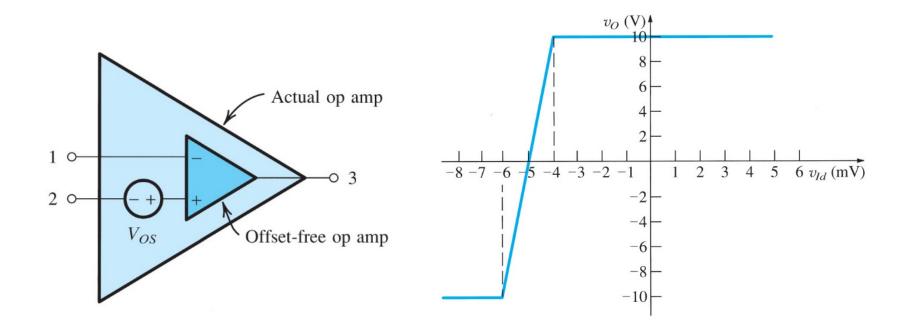

#### **Slew Rate vs. Bandwidth Limits**

For step function input waveform, both SR and bandwidth limits cause the output to rise with a finite slope, but there is an important difference:

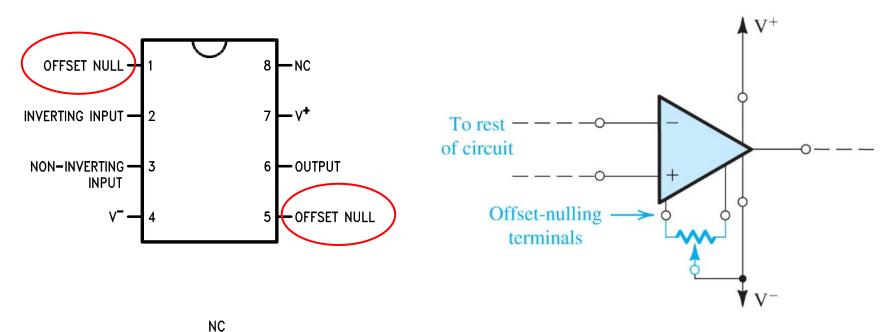


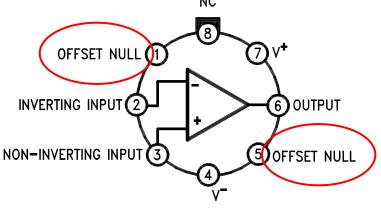
## **Full-Power Bandwidth**




For sinusoidal input to unity-gain follower:  $v_I = V_i \sin \omega t$ 

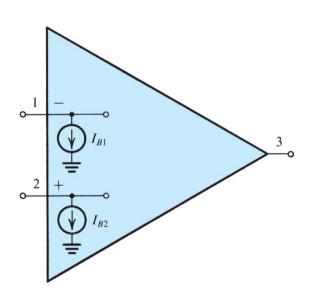
Rate of change:  $\frac{dv_{I}}{dt} = V_{i}\omega\cos\omega t \le SR$ 


Full-power bandwidth:


The frequency at which SR-limited distortion starts to occur for an output sinusoid with maximum rated output voltage,  $V_{omax}$ ,  $\omega_M V_{omax} = SR$  $f_M = \frac{SR}{2\pi V_{omax}}$ 

### **Offset Voltage**




## **Trimming of Offset Voltage**

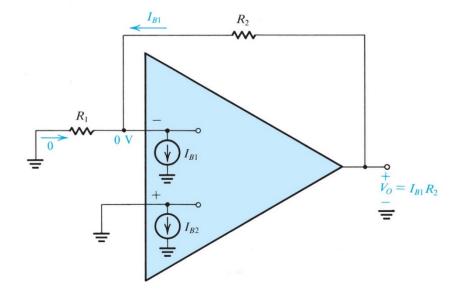




The output dc offset voltage of an op amp can be trimmed to zero by connecting a potentiometer to the two offset-nulling terminals. The wiper of the potentiometer is connected to the negative supply of the op amp.

#### **Input Bias Currents and Offset Currents**

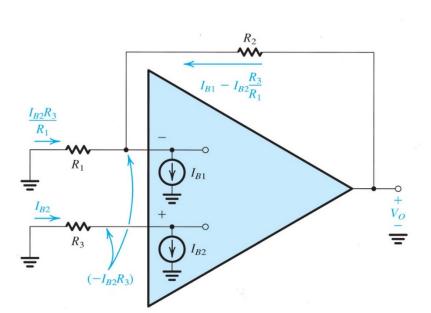



The input terminals need to be supplied with bias currents,  $I_{B1}$  and  $I_{B2}$ , for Op Amp to function. (This will become clear towards the end of the semester).

Input bias current: 
$$I_B = \frac{I_{B1} + I_{B2}}{2}$$

Input offset current:  $I_{OS} = |I_{B1} - I_{B2}|$ 

Typical bipolar transistor Op amps:  $I_B \sim 100 \text{ nA}$  $I_{OS} \sim 10 \text{ nA}$ 


## **Effect of Input Bias Current**



In the absence of input voltage, the output should be zero for ideal Op Amp. However, with non-zero  $I_B$ ,

$$V_O = I_{B1}R_2 \approx I_BR_2$$

#### **Reducing the Effect of Input Bias Currents**



$$V_{O} = -I_{B2}R_{3} + R_{2}\left(I_{B1} - \frac{I_{B2}R_{3}}{R_{1}}\right)$$
  
First approximate  $I_{B1} = I_{B2} = I_{B}$   
 $V_{O} = -I_{B}R_{3} + I_{B}R_{2} - \frac{I_{B}R_{3}}{R_{1}}R_{2} = I_{B}\left(R_{2} - R_{3}\left(1 + \frac{R_{2}}{R_{1}}\right)\right)$   
Choose  $R_{3} = \frac{R_{2}}{1 + \frac{R_{2}}{R_{1}}}, V_{O} = 0$ 

Now consider 
$$I_{B1} = I_B + \frac{I_{OS}}{2}$$
  
and  $I_{B2} = I_B - \frac{I_{OS}}{2}$   
 $V_O = I_{OS}R_2$ 

#### **Op-Amp Noise**

EE 105 Fall 2016

Prof. A. M. Niknejad

### **Op-Amp Distortion**

### **Datasheet Examples**

| *                                                                            |                              |                                 |                        | analog.com          |                      |                                      |                       |                     |                       |                                                   | C                                      |                                        |  |
|------------------------------------------------------------------------------|------------------------------|---------------------------------|------------------------|---------------------|----------------------|--------------------------------------|-----------------------|---------------------|-----------------------|---------------------------------------------------|----------------------------------------|----------------------------------------|--|
| Apply Filters to this Table Reset Table Hold Shift Key for secondary sorting |                              |                                 |                        |                     |                      |                                      |                       |                     |                       |                                                   |                                        |                                        |  |
| Part#                                                                        | Vsupply<br>span (min)<br>(V) | Vsupply<br>span<br>(max)<br>(V) | lq/Amp<br>(typ)<br>(A) | Amps per<br>Package | GBP<br>(typ)<br>(Hz) | Slew<br>Rate<br>(typ)<br>(V/us)<br>❤ | lbias<br>(max)<br>(A) | Vos<br>(max)<br>(V) | CMRR<br>(min)<br>(dB) | 0.1 to 10 Hz<br>Voltage Noise<br>(typ)<br>(V p-p) | VNoise<br>Density<br>(typ)<br>(V/rtHz) | US Price<br>1000 to<br>4999<br>(\$ US) |  |
| AD8099                                                                       | 5                            | 12                              | 15m                    | 1                   | 3.8G                 | 470                                  | 13µ                   | 500µ                | -105                  | -                                                 | 950p                                   | \$2.00                                 |  |
| AD8003                                                                       | 4.5                          | 10                              | 9.5m                   | 3                   | 1.65G                | 3.8k                                 | -                     | -                   | -48                   | -                                                 | 1.8n                                   | \$2.92                                 |  |
| <b>ADA4895-</b><br>1                                                         | 3                            | 10                              | 3m                     | 1                   | 1.5G                 | 943                                  | 6µ                    | 350µ                | -100                  | 99n                                               | 1n                                     | \$1.89                                 |  |
| ADA4895-<br>2                                                                | 3                            | 10                              | 3m                     | 2                   | 1.5G                 | 943                                  | 6µ                    | 350µ                | -100                  | 99n                                               | 1n                                     | \$3.21                                 |  |
| AD8021                                                                       | 4.5                          | 24                              | 7.8m                   | 1                   | 1G                   | 130                                  | 11.3µ                 | 1m                  | -98                   | -                                                 | 2.1n                                   | \$1.31                                 |  |
| AD8001                                                                       | 6                            | 12                              | 5m                     | 1                   | 880M                 | 1.2k                                 | 25µ                   | 5.5m                | -54                   | -                                                 | 2n                                     | \$1.51                                 |  |
| AD829                                                                        | 9                            | 36                              | 5.3m                   | 1                   | 750M                 | 230                                  | 7μ                    | 1m                  | -120                  | -                                                 | 1.7n                                   | \$2.78                                 |  |
| ADA4861-<br>3                                                                | 5                            | 12                              | 16.1m                  | 3                   | 730M                 | 680                                  | -                     | -                   | -56.5                 | -                                                 | 3.2n                                   | \$0.96                                 |  |

#### Analog.com's website: Sort by GBP and then SR

### **Low Power Op-Amps**

| Part#         | Vsupply<br>span (min)<br>(V) | Vsupply<br>span<br>(max)<br>(V) | lq/Amp<br>(typ)<br>(A) | Amps per<br>Package | GBP<br>(typ)<br>(Hz) | Slew<br>Rate<br>(typ)<br>(V/us) | Ibias<br>(max)<br>(A) | Vos<br>(max)<br>(V) | CMRR<br>(min)<br>(dB) | 0.1 to 10 Hz<br>Voltage Noise<br>(typ)<br>(V p-p) | VNoise<br>Density<br>(typ)<br>(V/rtHz) | US Price<br>1000 to<br>4999<br>(\$ US) |
|---------------|------------------------------|---------------------------------|------------------------|---------------------|----------------------|---------------------------------|-----------------------|---------------------|-----------------------|---------------------------------------------------|----------------------------------------|----------------------------------------|
| ADA4312-<br>1 | 12                           | 12                              | -                      | 1                   | -                    | 2.1k                            | -                     | -                   | -                     | -                                                 | -                                      | \$1.89                                 |
| ADLD8403      | 11.75                        | 13.2                            | -                      | 2                   | -                    | -                               | -                     | -                   | -                     | -                                                 | -                                      | \$1.59                                 |
| AD8398A       | 12                           | 12                              | -                      | 1                   | -                    | 600                             | -                     | -                   | -                     | -                                                 | 4.8n                                   | \$1.45                                 |
| AD8390A       | 10                           | 24                              | -                      | -                   | -                    | 260                             | -                     | -                   | -                     | -                                                 | 5n                                     | \$1.08                                 |
| AD8398        | 12                           | 12                              | -                      | 1                   | -                    | 820                             | -                     | -                   | -                     | -                                                 | 2.85n                                  | \$2.30                                 |
| AD8504        | 1.8                          | 5                               | 750n                   | 4                   | 7k                   | 4m                              | 10p                   | 3m                  | -67                   | 6µ                                                | 190n                                   | \$1.00                                 |
| AD8502        | 1.8                          | 5                               | 750n                   | 2                   | 7k                   | 4m                              | 10p                   | 3m                  | -67                   | 6µ                                                | 190n                                   | \$0.70                                 |
| AD8500        | 1.8                          | 5                               | 750n                   | 1                   | 7k                   | 4m                              | 10p                   | 1m                  | -75                   | -                                                 | 190n                                   | \$0.71                                 |
| OP481         | 2.7                          | 12                              | 5μ                     | 4                   | 105k                 | 28m                             | 10n                   | 1.5m                | -65                   | 10µ                                               | 85n                                    | \$3.65                                 |
| OP281         | 2.7                          | 12                              | 5μ                     | 2                   | 105k                 | 28m                             | 10n                   | 1.5m                | -65                   | 10µ                                               | 75n                                    | \$2.79                                 |
| ADA4505-<br>1 | 1.8                          | 5                               | 9µ                     | 1                   | 50k                  | 6m                              | 2р                    | 3m                  | -90                   | 2.95µ                                             | 65n                                    | \$0.41                                 |

Analog.com's website: Sort by Bias current and then GBP

#### Look at Datasheet



#### Low Noise, High Speed Amplifier for 16-Bit Systems

#### AD8021

#### **FEATURES** Low noise 2.1 nV/√Hz input voltage noise 2.1 pA/ $\sqrt{Hz}$ input current noise **Custom compensation** Constant bandwidth from G = -1 to G = -10**High speed** 200 MHz (G = -1)190 MHz (G = -10) Low power 34 mW or 6.7 mA typical for 5 V supply Output disable feature, 1.3 mA Low distortion -93 dBc second harmonic, f<sub>c</sub> = 1 MHz -108 dBc third harmonic, f<sub>c</sub> = 1 MHz **DC precision** 1 mV maximum input offset voltage 0.5 µV/°C input offset voltage drift

#### **CONNECTION DIAGRAM**

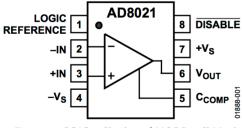



Figure 1. SOIC-8 (R-8) and MSOP-8 (RM-8)

The AD8021 allows the user to choose the gain bandwidth product that best suits the application. With a single capacitor, the user can compensate the AD8021 for the desired gain with little trade-off in bandwidth. The AD8021 is a well-behaved amplifier that settles to 0.01% in 23 ns for a 1 V step. It has a fast overload recovery of 50 ns.

The AD8021 is stable over temperature with low input offset