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LTI Definition
l System is linear (studied thoroughly in 16AB):

l System is time invariant:
– There is no “clock” or time reference
– The transfer function is not a function of time
– It does not matter when you apply the input.  The 

transfer function is going to be the same …

University of California, Berkeley
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Linear Systems
l Continuous time linear systems have a lot in 

common with finite dimensional linear systems we 
studied in 16AB:
– Linearity:

– Basis Vectors  à basis functions:

– Superposition:

– Matrix Representation à Integral representation:

University of California, Berkeley
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Linear Systems (cont)
l Eigenvectors à eigenfunctions

l Orthonormal basis

l Eigenfunction expansion

l Operators acting on eigenfunction expansion

University of California, Berkeley
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LTI Systems
l Since most periodic (non-periodic) signals can be 

decomposed into a summation (integration) of 
sinusoids via Fourier Series (Transform), the 
response of a LTI system to virtually any input is 
characterized by the frequency response of the 
system:

University of California, Berkeley
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Example:  Low Pass Filter (LPF)

l Input signal:  
l We know that:
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LPF the “hard way” (cont.)
l Plug the known form of the output into the equation and 

see if it can satisfy KVL and KCL

l Since sine and cosine are linearly independent functions:
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LPF:  Solving for response…
l Applying linear independence

University of California, Berkeley

( )

2
0

2/12
0

2
0

0

0

1

00

00

)(1
1
)(1

))(1(cos

)tan1(cos

)sin(cos
tan

tan
0sincos

0cossin

wt

wt

wtf

fwtf

fwtf
wtf

wtf
fwtf
fwtf

+
=

=+

=+

=-

=-
-=

-=
=--

=--

-

s

s

s

s

s

s

V
V

VV

VV
VV
VV

VVV
VV

Phase Response:

Amplitude Response:



EE 105 Fall 2016

9

Prof. A. M. Niknejad

LPF Magnitude Response

University of California, Berkeley
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LPF Phase Response

University of California, Berkeley
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dB:  Honor the inventor of the phone…
l The LPF response quickly decays to zero
l We can expand range by taking the log of the 

magnitude response
– dB = deciBel (deci = 10)

University of California, Berkeley
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Why 20?  Power!
l Why multiply log by “20” rather than “10”?
l Power is proportional to voltage squared:

l At breakpoint:

l Observe:  slope of signal attenuation is 20 
dB/decade in frequency
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Why introduce complex numbers?
l They actually make things easier
l One insightful derivation of 
l Consider a second order homogeneous DE

l Since sine and cosine are linearly independent, any 
solution is a linear combination of the 
“fundamental” solutions
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Insight into Complex Exponential
l But note that      is also a solution!
l That means:
l To find the constants of prop, take derivative of this 

equation:

l Now solve for the constants using both equations:
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Complex Exponential

University of California, Berkeley

ℜ(z)

ℑ(z)

z = x + jy

|z|

φ

ejφ

|e
jθ | =

1

z = |z|ej ̸ z = mejφ

x

y

φ = ̸ z



EE 105 Fall 2016

16

Prof. A. M. Niknejad

The Rotating Complex Exponential 
l So the complex exponential is nothing but a point 

tracing out a unit circle on the complex plane:
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Magic:  Turn Diff Eq into Algebraic Eq

l Integration and differentiation are trivial with 
complex numbers:

l Any ODE is now trivial algebraic manipulations … 
in fact, we’ll show that you don’t even need to 
directly derive the ODE by using phasors

l The key is to observe that the current/voltage 
relation for any element can be derived for complex 
exponential excitation
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Complex Exponential is Powerful
l To find steady state response we can excite the system with 

a complex exponential

l At any frequency, the system response is characterized by a 
single complex number H:

l This is not surprising since a sinusoid is a sum of complex 
exponentials (and because of linearity!)

l From this perspective, the complex exponential is even 
more fundamental
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LPF Example:  The “soft way”
l Let’s excite the system with a complex exp:
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Magnitude and Phase Response
l The system is characterized by the complex 

function

l The magnitude and phase response match our 
previous calculation:
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Why did it work?
l Again, the system is linear:

l To find the response to a sinusoid, we can find the 
response to       and         and sum the results:
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(cont.)
l Since the input is real, the output has to be real:

l That means the second term is the conjugate of the 
first:

l Therefore the output is:
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“Proof” for Linear Systems
l For an arbitrary linear circuit (L,C,R,M, and 

dependent sources), decompose it into linear sub-
operators, like multiplication by constants, time 
derivatives, or integrals:

l For a complex exponential input x this simplifies 
to:
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“Proof” (cont.)
l Notice that the output is also a complex exp times a 

complex number:

l The amplitude of the output is the magnitude of the 
complex number and the phase of the output is the 
phase of the complex number
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Phasors

l With our new confidence in complex numbers, we 
go full steam ahead and work directly with them … 
we can even drop the time factor       since it will 
cancel out of the equations.

l Excite system with a phasor:
l Response will also be phasor:
l For those with a Linear System background, we’re 

going to work in the frequency domain
– This is the Laplace domain with 
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Capacitor I-V Phasor Relation
l Find the Phasor relation for current and voltage in a 

cap:
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Inductor I-V Phasor Relation

University of California, Berkeley

l Find the Phasor relation for current and voltage in 
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Complex Transfer Function
l Excite a system with an input voltage (current) x
l Define the output voltage y (current) to be any node 

voltage (branch current)
l For a complex exponential input, the “transfer 

function” from input to output:

l We can write this in canonical form as a rational 
function:

University of California, Berkeley

÷÷
ø

ö
çç
è

æ
++++++=º !! 2

212
21 )(

)(
ww

ww
j
c

j
cjbjba

x
yH

!
!
+++
+++

= 2
321

2
321

)(
)()(

ww
www
jdjdd
jnjnnH



EE 105 Fall 2016

29

Prof. A. M. Niknejad

Impede the Currents !
l Suppose that the “input” is defined as the current of 

a terminal pair (port) and the “output” is defined as 
the voltage into the port:

l The impedance Z is defined as the ratio of the 
phasor voltage to phasor current (“self” transfer 
function)
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Admit the Currents!

University of California, Berkeley

l Suppose that the “input” is defined as the current of 
a terminal pair (port) and the “output” is defined as 
the voltage into the port:

l The admmittance Z is defined as the ratio of the 
phasor current to phasor voltage (“self” transfer 
function)
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Voltage and Current Gain
l The voltage (current) gain is just the voltage 

(current) transfer function from one port to another 
port:

l If G > 1, the circuit has voltage (current) gain
l If G < 1, the circuit has loss or attenuation
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Transimpedance/admittance
l Current/voltage gain are unitless quantities
l Sometimes we are interested in the transfer of 

voltage to current or vice versa
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Direct Calculation of H (no DEs)
l To directly calculate the transfer function 

(impedance, trans-impedance, etc) we can 
generalize the circuit analysis concept from the 
“real” domain to the “phasor” domain

l With the concept of impedance (admittance), we 
can now directly analyze a circuit without explicitly 
writing down any differential equations

l Use KVL, KCL, mesh analysis, loop analysis, or 
node analysis where inductors and capacitors are 
treated as complex resistors

University of California, Berkeley
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LPF Example:  Again!
l Instead of setting up the DE in the time-domain, 

let’s do it directly in the frequency domain
l Treat the capacitor as an imaginary “resistance” or 

impedance:

l We know the impedances:
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LPF … Voltage Divider

l Fast way to solve problem is to say that the LPF is 
really a voltage divider
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Bigger Example (no problem!)
l Consider a more complicated example:
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Second Order Transfer Function
l Series RLC circuit

University of California, Berkeley
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Poles/Zeros of Shunt RLC Circuit

University of California, Berkeley
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Does it sound better?
l Application of LPF:  Noise Filter
l Listen to the following sound file (corrupted 

with noise)
l Since the noise has a flat frequency spectrum, 

if we LPF the signal we should get rid of the 
high-frequency components of noise

l The filter cutoff frequency should be above the 
highest frequency produced by the human 
voice (~ 5 kHz).  

l A high-pass filter (HPF) has the opposite 
effect, it amplifies the noise and attenuates the 
signal.

University of California, Berkeley
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Building Tents:  Poles and Zeros
l For most circuits that we’ll deal with, the transfer 

function can be shown to be a rational function

l The behavior of the circuit can be extracted by 
finding the roots of the numerator and denominator

l Or another form (DC gain explicit)
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Poles and Zeros (cont)

l The roots of the 
numerator are called the 
“zeros” since at these 
frequencies, the transfer 
function is zero

l The roots of the 
denominator are called 
the “poles”, since at 
these frequencies the 
transfer function peaks 
(like a pole in a tent)
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Finding the Magnitude (quickly)
l The magnitude of the response can be calculated 

quickly by using the property of the mag operator:

l The magnitude at DC depends on G0 and the 
number of poles/zeros at DC.  If K > 0, gain is zero.  
If K < 0, DC gain is infinite.  Otherwise if K=0, 
then gain is simply G0
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Finding the Phase (quickly)
l The phase can be computed quickly with the following 

formula:

l No the second term is simple to calculate for positive 
frequencies:

l Interpret this as saying that multiplication by j is equivalent 
to rotation by 90 degrees
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Bode Plots
l Simply the log-log plot of the magnitude and phase 

response of a circuit (impedance, transimpedance, gain, …)
l Gives insight into the behavior of a circuit as a function of 

frequency
l The “log” expands the scale so that breakpoints in the 

transfer function are clearly delineated 
l In EECS 140, Bode plots are used to “compensate” circuits 

in feedback loops
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Example:  High-Pass Filter

l Using the voltage divider rule:
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HPF Magnitude Bode Plot
l Recall that log of product is the sum of log
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HPF Bode Plot (dissection)
l The second term can be further dissected:
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Composite Plot
l Composite is simply the sum of each component:
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Approximate versus Actual Plot

l Approximate curve accurate away from breakpoint
l At breakpoint there is a 3 dB error

University of California, Berkeley
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HPF Phase Plot
l Phase can be naturally decomposed as well:

l First term is simply a constant phase of 90 degrees
l The second term is the arctan function
l Estimate arctan function:
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“s” Complex Plane
l You may see people talking about transfer functions 

as a function of complex “s” rather than frequency

l This is a generalization (Laplace Domain) of 
frequency that you will learn about later.  For now, 
just evaluate the function as follows

l This is why you may see people defining a function 
like:

University of California, Berkeley

 
H (s) = (z1 − s)(z2 − s)!

(p1 − s)(p2 − s)!

 
H (s = jω ) = (z1 − jω )(z2 − jω )!

(p1 − jω )(p2 − jω )!

H ( jω )
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Power Flow
l The instantaneous power flow into any element is 

the product of the voltage and current:
l For a periodic excitation, the average power is:

l In terms of sinusoids we have
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)()()( tvtitP =

ò=
T

av dviP ttt )()(

Pav = I cos(ωt +ϕi )V cos(ωt +ϕv )dτ
T
∫

= I ⋅ V (cosωt cosϕi − sinωt sinϕi
T
∫ ) ⋅(cosωt cosϕv − sinωt sinϕv )dτ

= I ⋅ V dτ cos2ωt cosϕi cosϕv + sin
2ωt sinϕi sinϕv + csinωt cosωt

T
∫

=
I ⋅ V
2

(cosϕi cosϕv + sinϕi sinϕv ) =
I ⋅ V
2

cos(ϕi −ϕv )
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Power Flow with Phasors

l Note that if                    , then 
l Important:  Power is a non-linear function so we 

can’t simply take the real part of the product of the 
phasors:

l From our previous calculation:

University of California, Berkeley

]Re[
2
1]Re[

2
1)cos(

2
** VIVI

VI
P vi ×=×=-

×
= ff

]Re[ VIP ×¹

)cos(
2 viav

VI
P ff -

×
=

Power Factor

2
)( pff =- vi 0)2/cos(

2
=

×
= p

VI
Pav



EE 105 Fall 2016

54

Prof. A. M. Niknejad

More Power to You!
l In terms of the circuit impedance we have:

l Check the result for a real impedance (resistor)
l Also, in terms of current:
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Summary
l Complex exponentials are eigen-functions of LTI 

systems
– Steady-state response of LCR circuits are LTI systems
– Phasor analysis allows us to treat all LCR circuits as 

simple “resistive” circuits by using the concept of 
impedance (admittance)

l Frequency response allows us to completely 
characterize a system
– Any input can be decomposed into either a continuum or 

discrete sum of frequency components
– The transfer function is usually plotted in the log-log 

domain (Bode plot) – magnitude and phase
– Location of poles/zeros is key 
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