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LTI Definition

o System 1s [inear (studied thoroughly in 16 AB):

o System 1s time invariant:

— There 1s no “clock” or time reference
— The transfer function is not a function of time

— It does not matter when you apply the input. The
transfer function 1s going to be the same ...
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Linear Systems

o Continuous time linear systems have a lot in
common with finite dimensional linear systems we

studied in 16AB:

~ Linearity:
— Basis Vectors = basis functions:

— Superposition:

— Matrix Representation = Integral representation:
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Linear Systems (cont)

o Eigenvectors = eigenfunctions

o Orthonormal basis

o Eigenfunction expansion

o Operators acting on eigenfunction expansion
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LTI Systems

e Since most periodic (non-periodic) signals can be
decomposed 1nto a summation (integration) of
sinusoids via Fourier Series (Transform), the
response of a LTI system to virtually any input 1s
characterized by the frequency response of the
system:

Any linear circuit
With L,C,R,M
and dep. sources
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Example: Low Pass Filter (LPF)

e Input signal:
e We know that:

v (t)=V, cos(wr)

Phase shift

v (1)=K -V cos(wt+ @)

H{._/

v, \

Amp shift

Vo) = v, (1) —i(D)R

avy
dt
dv,

V(1) = Vo(t)+fg

vo(t)=v (1)—RC
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LPF the “hard way” (cont.)

o Plug the known form of the output into the equation and
see 1f 1t can satisfy KVL and KCL

V. cosawt =V, cos(wt +@)—1wV,sin(wt + @)
cos(Xx+ y) =COSXCOS y—sinxsin y
sin(x+ y) =sin xcos y +cosxsin y

V. cosawt =V, coswt(cosg—7wsm@)—V,smwt(sing+7 wcosp)

o Since sine and cosine are linearly independent functions:
a, smat+a,cosaxt =0

FF a, =a,=0
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LPF: Solving for response...

o Applying linear independence
— —V,sm¢g—-V,rwcosgp=0

Viocosp—V,cosmg—V =0 «

— tang=—Tw

Phase Response: d=—tan" T @
Vi(cosp—twsm@) =V, -
Vocosgp(l-twtang) =V,
V,cosg(1+(r w)*) =V,

v,(1+ (o)) =V

Ve 1

v, Jl+ (o)’

Amplitude Response:
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LPF Magnitude Response

Filter Passband w=—
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LPF Phase Response

10
w = —
-
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dB: Honor the inventor of the phone...

o The LPF response quickly decays to zero

o We can expand range by taking the log of the
magnitude response

—- dB = deciBel (dec1 = 10)

dB = 201og %

11
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Why 20?7 Power!

o Why multiply log by “20" rather than “10™?
o Power 1s proportional to voltage squared:

2
dB =10 log(&] =20 log(&j

V. V.

S S

- Z
o Atbreakpoint: @=l7- [7] =-3dB

w=100/7 %L&j =—40dB
dB

N

w=1000/7 —)(%J =—-60dB

s /dB

o Observe: slope of signal attenuation 1s 20
dB/decade in frequency

12
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Why introduce complex numbers?

o They actually make things easier
o One insightful derivation of e”

o Consider a second order homogeneous DE
y +y=0
sin x
y =
COS X
o Since sine and cosine are linearly independent, any

solution 1s a linear combination of the
“fundamental” solutions

13
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Insight into Complex Exponential

o But note that ¢™is also a solution!
o That means: ¢™ =g, sinx+a,cosx

o To find the constants of prop, take derivative of this
equation:

ie” =—a,sinx+a, cosx

o Now solve for the constants using both equations:

sinx cosx \ e’
cosx —sinxf\a,) |ie"

a
A =b detA=—-1#0
d,

14
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Complex Exponential

@ Eulor's Theorem says that
e = cosx + jsin x

@ This can be derived by expanding each term in a power series.
o |f take the magnitude of this quantity, it's unity

e = Vcos2x + sin?x = 1

@ That means that e/? is a point on the unit circle at an angle
of ¢ from the x-axis. 3(z)
Any complex number z, expressed as

. T V] A z=x+Jy
have a real and imaginary part z = 7
N _
L7 ¢ =/z
G L2 — el

©

|
Y

o

¢ = £z = tan"1 y/x can be combined
using the complex exponential

y
x+jy, can also be interpreted as having 0N N )
a magnitude and a phase. The mag- & N\
nitude |z| = y/x? + y? and the phase A |

x+jy = |z|e/?
15
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The Rotating Complex Exponential

e So the complex exponential 1s nothing but a point
tracing out a unit circle on the complex plane:

e’ =cosx+isinx

1t —iot

e +e

1ot —iot

16
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Magic: Turn Diff Eq into Algebraic Eq

o Integration and differentiation are trivial with
complex numbers:

ieia)t — Z-a)eia)t J‘eia)rdz_ — .Leia)t

dt 0,

o Any ODE is now trivial algebraic manipulations ...
in fact, we'll show that you don’t even need to

directly derive the ODE by using phasors

o The key 1s to observe that the current/voltage
relation for any element can be derived for complex
exponential excitation

17
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Complex Exponential is Powerful

o To find steady state response we can excite the system with

a complex exponential Mag Response

i oot LTI System

Phase Response

o At any frequency, the system response is characterized by a
single complex number H:

H (o) ¢ == H(o)

o This 1s not surprising since a sinusoid is a sum of complex
exponentials (and because of linearity!)

. eia)t _e—ia)t eia)t +e—ia)t
SIn Wt = COSwt =

2i 2
o From this perspective, the complex exponential 1s even
more fundamental

18
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LPF Example: The “soft way”

o Let's excite the system with a complex exp:

dv,

— v()=v,(t)+T—
dt use j to avoid confusion

v.(t)=V.e"
= = pe

NN

real complex

Ve =He e jo Vg

V. =V(1+ja)-r)
V, 1
V (1+]a) r)

Easy!!!

19
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Magnitude and Phase Response

o The system 1s characterized by the complex
function

Vo 1

V.o (1+ ja)-r)

S

H(w) =

o The magnitude and phase response match our
previous calculation:

1
H
H@) = \/1 +(w7)’ 4
< H(w)=—tan™ ot v

20
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Why did it work?

e Again, the system 1s linear:
y=L(x, +x,) =L(x,) +L(x,)

o To find the response to a sinusoid, we can find the
response to ¢’ and ¢'* and sum the results:

i oot LTI System

LTI System

e—i(()f—> H —>|H(_w) ei(_a)t+¢2)

1ot —iot

e Te LTI System | H(w)e'" + H(-w)e "
2 " 2

21
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(cont.)

o Since the mput 1s real, the output has to be real:
H(w)e'™ + H(—w)e

()=
o That means the second term 1s the conjugate of the
first:
‘H (—a))‘ = ‘H (a))‘ (even function)

<H(—w)=—<H(w)=—¢ (oddfunction)
o Therefore the output 1s:
|H (@)

2
= ‘H(a))‘ cos(awt + @) ‘/

( i(rvg) e—i(a)t+¢))

y(o) =

22
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“Proof” for Linear Systems

e For an arbitrary linear circuit (L,C,R,M, and
dependent sources), decompose 1t into linear sub-
operators, like multiplication by constants, time
derivatives, or integrals: |
y=L@=ax+th xrb S xbet [ [l [[fe

e For a complex eéponent{al input x this simplifies
to:

- o d ., db | |
y:L(e]M):aemt+blj€]m+b2P€]wt+"'+Clj€]wt+Czjjejwt+---
{ {

jot

Jjar Jjor
jot €

e
+ete,—+cC o

+b(jw)e
,(Jo) i 2(ja))2

y=ae’” +b, jwe

y:Hx:ef“”(aerlja)erz(ja))z+---+ Ly 2+---j
jo  (jo)

23
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“Proof” (cont.)

o Notice that the output 1s also a complex exp times a
complex number:

y:Hx:ejwt(a+blja)+b2(ja))2+---+ 1y 2+---j
jo (jo)

o The amplitude of the output 1s the magnitude of the
complex number and the phase of the output 1s the
phase of the complex number

|

c, ]
: _|_ : 5 _|_...
jo (jo)
y :eja)t‘H(a))‘ejdLl(a))

Re[y]=|H (®)|cos(wt+ < H(w))

Jjot

y=Hx=e'"|a+bjo+b,(jw) + -+

24
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Phasors

o With our new confidence in complex numbers, we
go full steam ahead and work directly with them ...
we can even drop the time factor e’ since it will
cancel out of the equations.

o Excite system with a phasor: V. =Ve'
« Response will also be phasor: ¥, =V,e’

o For those with a Linear System background, we're
going to work in the frequency domain

— This is the Laplace domain with § = j@

25
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Capacitor I-V Phasor Relation

o Find the Phasor relation for current and voltage 1n a
cap:

26

i (t)=C

@)
_ +
i ()=1e"
(1) (=L v () ==
dt v (1) =V
O

[ e = Ci[vceﬂ“f]
dt

d . .
CV. —e’ = joCV.e™
dt
[ e = joCV.e™

[.=joCV,

i (1)

University of California, Berkeley
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Inductor |-V Phasor Relation

o Find the Phasor relation for current and voltage in
an inductor:

i v
di(r) i(t)=Ie
V(o)=L dt v(t) = Ve’ v(t) % i(2)

Ve = Li[lef“”]
dt

d . |
LI- e = jo Lle™
Ve’ = jw Lle™

V=joLlI

27
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Complex Transfer Function

Excite a system with an input voltage (current) x

Define the output voltage y (current) to be any node
voltage (branch current)

For a complex exponential input, the “transfer
function” from input to output:
G

szz[a+b1ja)+b2(ja))2+---+. + _022+---j
X jo (jo)

We can write this in canonical form as a rational
function:

n, +n2ja)+n3(ja))2+---
d, +a’2ja)+a’3(ja))2 4.

H(w) =

University of California, Berkeley
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Impede the Currents !

e Suppose that the “input” is defined as the current of
a terminal pair (port) and the “output” 1s defined as
the voltage into the port:

Circuit i(t)=1e’" = ‘ [‘ej(wtwi)

L . o
o | v(t) =Ve'™ =|V]e/
v(t)¢ i(t) Arbitrary LT
—o

o The impedance Z is defined as the ratio of the
phasor voltage to phasor current (“self” transfer
function)

Z(w)=H(w)=— J(4,-4))

I/

V_‘V
]

29
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Admit the Currents!

o« Suppose that the “input” is defined as the current of
a terminal pair (port) and the “output” is defined as
the voltage into the port:

Circuit i(t)=1e’" = ‘ [‘ej(wtwi)

L . o
o | v(t) =Ve'™ =|V]e/
v(t)¢ i(t) Arbitrary LT
®

o The admmittance Z 1s defined as the ratio of the
phasor current to phasor voltage (“self” transfer
function)

](¢1 _¢v)

Y(w)=H(®)=—= %

1_‘1
V

30
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Voltage and Current Gain

o The voltage (current) gain 1s just the voltage
(current) transfer function from one port to another
port:

o, o+ +o
@ ®
OO0 AT (O
<« ® ® .
G (Cf)) _ Vz _ V2 ej(¢z—¢1)
AT
G((())Z ]2 _ ]2 ej(¢2—¢1)
l ]1 ]1

e If G > 1, the circuit has voltage (current) gain
o If G <1, the circuit has loss or attenuation

University of California, Berkeley
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Transimpedance/admittance

o Current/voltage gain are unitless quantities

o Sometimes we are interested 1n the transfer of
voltage to current or vice versa

Circuit

w@Oiw | A 5 b

J(w) = Vz _ Vz e’/ =h) [Q]
1, 1

K(w)= 1 _ 1, e/ r=h) [S]
e

32
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Direct Calculation of H (no DEs)

o To directly calculate the transfer function
(impedance, trans-impedance, etc) we can
generalize the circuit analysis concept from the
“real” domain to the “phasor’ domain

o With the concept of impedance (admittance), we
can now directly analyze a circuit without explicitly
writing down any differential equations

o Use KVL, KCL, mesh analysis, loop analysis, or
node analysis where inductors and capacitors are
treated as complex resistors

33
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LPF Example: Again!

o Instead of setting up the DE 1n the time-domain,
let’s do it directly in the frequency domain

. . ° 11 ° 7
o Treat the capacitor as an 1imaginary "resistance” or

impedance:
R ,____Z_R _____
+ |
v (~) c =0 —> Vi e Vo
T T
time domain “real” circuit frequency domain “phasor” circuit

o We know the impedances:
1

i Z,=R Z.=——
_] O)C University of California, Berkeley
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LPF ... Voltage Divider

______ R____,
V C:: V,
Hl

o Fast way to solve problem 1s to say that the LPF 1s
really a voltage divider

1
H(a))—VO: Z; _ jaC _ 1 ‘/
Ve Ze+Zp p,. 1 1+joRC
jaC

35
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Bigger Example (no problem!)

EE 105 Fall 2016

o Consider a more complicated example:

Rl R2
WA WA
. +
v (1) Co—=  Z,V, |Gz v (D)

,
Hw)=te=_%c "0 7 _RiR|Z,
V. Z, 420, V,

Veﬁ‘ _ Zc1 H(a)) _ Zcz . ZCI
4 Rl +Zc1 Rz +R1 || ZCl +Zc2 R1 +ZC1

N

University of California, Berkeley
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Second Order Transfer Function

o Series RLC circuit

37
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Poles/Zeros of Shunt RLC Circuit

38
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Does it sound better?
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Application of LPF: Noise Filter
Listen to the following sound file (corrupted

with noise)

Since the noise has a flat frequency spectrum,
if we LPF the signal we should get rid of the
high-frequency components of noise

The filter cutoff frequency should be above the
highest frequency produced by the human

voice (~ 5 kHz).

A high-pass filter (HPF) has the opposite
effect, it amplifies the noise and attenuates the

BPF (both tones)

signal.

Tones

@

Tone

(l)

+ Noise

—
o
n

BPF on 1st tone

University of California, Berkeley
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Building Tents: Poles and Zeros

o For most circuits that we'll deal with, the transfer
function can be shown to be a rational function

n+n,jo+n(jo)’ +--

d+d,jo+d,(jo)’ +--

o The behavior of the circuit can be extracted by
finding the roots of the numerator and denominator

_ g -jo)z—jo)-- _]]E-jo)
(p—Jjo)p,—jo)-- H(pi — j®)
e Or another form (DC gain explicit)

ok (—jer)(-jer,) . o (-jer)
H(a))—Go(]CU) (l—ja)sz)(l—ja)sz)---_GO(]C()) H(l_ja)z-p’i)

University of California, Berkeley

H(w) =

H(w)
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Poles and Zeros (cont)

e The roots of the A
numerator are called the
“zeros” since at these

frequencies, the transfer
function 1s zero

e The roots of the
denominator are called
the “poles”, since at
these frequencies the
transfer function peaks H(o) (z, —jo)(z, —jo)-

(like a pole 1n a tent) (p,—jo)p,— jo)-

41
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Finding the Magnitude (quickly)

o The magnitude of the response can be calculated
quickly by using the property of the mag operator:

Nk U-jor Y- joz,)- -
‘H(CU)‘ =|Coli@) (l_ja)fpz)(l_ja)fpz)"'

K ‘l_ja)z-zl

_ ‘Go‘a) - jor_,

‘l—ja)rpzul—ja)rpz‘ e

o The magnitude at DC depends on G, and the
number of poles/zeros at DC. If K> 0, gain 1s zero.
If K <0, DC gain 1s infinite. Otherwise 1f K=0,
then gain is simply G,
42
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Finding the Phase (quickly)

o The phase can be computed quickly with the following
formula:

(= jor) - jer )
-<H(C())—-<G0(]a)) (l—ja)z-pz)(l_ja)z-p2)“.

=< G+ <(jo) ' +<(1-jor )+ <(1-jor_,)+
-<(-jor,)-<(1-jor, ,)-"-
o No the second term 1s simple to calculate for positive
frequencies:
T

< (jo)" :KE

o Interpret this as saying that multiplication by j 1s equivalent
to rotation by 90 degrees

43
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Bode Plots

o Simply the log-log plot of the magnitude and phase
response of a circuit (impedance, transimpedance, gain, ...)

o Gives insight into the behavior of a circuit as a function of
frequency

o The “log” expands the scale so that breakpoints in the
transfer function are clearly delineated

o In EECS 140, Bode plots are used to “compensate” circuits
in feedback loops

44
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Example: High-Pass Filter

o Using the voltage divider rule: ja)£

'L
H(w) = /2 R

R+ joL 1—|—ja)%

W) H(w) ==
1+ jor

v (1) L v, (1) jot| _ i

@ —> © ‘H‘—)

jot

45
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HPF Magnitude Bode Plot

o Recall that log of product is the sum of log

T , 1
‘H(a))‘dB - ! - - ‘]wT‘dB + -
I+ jor| I+ jor|
Jjor|, Increase by 20 dB/decade
wr =1=|jwr| =0dB Equals unity at breakpoint
s0d8 |
EIzodB
2008 |
100

46 -20 dB

University of California, Berkeley
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HPF Bode Plot (dissection)

e The second term can be further dissected:

1
: :OdB—‘1+ja)T‘dB
I+ jor|
1
1/z 1/t 10/t w<<— (0dB
0dB . : . 4
20 dB 120 dB w >> l -20 dB/dec
_____________________________ .
R ,-1 ~-3dB
T
-60 dB
- 3dB
w=—
47 T
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Composite Plot

o Composite 1s simply the sum of each component:

1
1+ jor

jeot|;+

5 High frequency ~ 0 dB Gain

A

A 4

0dB .
Low frequency attenuation

48
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Approximate versus Actual Plot

_____

o Approximate curve accurate away from breakpoint
o At breakpoint there 1s a 3 dB error

49
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HPF Phase Plot

o Phase can be naturally decomposed as well:

JjoT . 1 T 4
— =< JOT+ < —=——tan wr
1+ jor 1+ jor

o First term 1s simply a constant phase of 90 degrees
e The second term 1s the arctan function

< H(w) =<

o Estimate arctan function:

1 \
<< — \——:~ ——————
T :

45
Actual curve

1
 >> —

T

\ University of California, Berkeley
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“s” Complex Plane

e You may see people talking about transfer functions
as a function of complex “s” rather than frequency

(2, —5)(2, =)

H(s)=
= o =5 —s)

o This 1s a generalization (Laplace Domain) of
frequency that you will learn about later. For now,
just evaluate the function as follows

(z, — jo)(z, — jO)- -

(p,—Jjo)(p,— jw)--

o This 1s why you may see people defining a function
like: H(jw)

H(s=jw)=

51
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Power Flow

o The instantaneous power flow into any element 1s
the product of the voltage and current: P(¢) =i(¢)v(¢)

o For a periodic excitation, the average power 1is:

= j i(t)v(r)dr
e In terms of sinusoidsTwe have
=J|I| cos(wt +¢,)dT
T

=|1|-|V| | (cos @t cos @, — sinwt sin@,) - (coswt cos @, — sinwt sin@, )dt
T

=|71-|V| | dT cos®* wtcos®. cos@ + sin® ¢ sin®. sin® + ¢ sin @¢cos wt
J l \% l \%

T

_l-v _vl

——Ccos(Q, —0,)

Umversity of California, Berkeley

5o = o (COSQ,cosQ, +sme,sing,)=



EE 105 Fall 2016 Prof. A. M. Niknejad

Power Flow with Phasors

1]

cos(qﬁ,-T—qz,)

Power Factor

o Note that if (¢, _¢v):§ ,then P = cos(7/2)=0

o Important: Power 1s a non-linear function so we

can't simply take the real part of the product of the
phasors:

av

1V

P#Re[l V]

o From our previous calculation:

1V 1 1

P= cos(¢l.—¢V):ER6[1-V*]:§RG[I*-V]

93
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More Power to You!

e In terms of the circuit impedance we have:

1 S TR N | 4 R
=—Re[/-V']==Re[—-V']=""-Re[Z
P 2Re[IV] 5 e[ZV] 5 e|Z ]
2 * 2
M e 2=
2 |z 2z

4
Re[Z | = ~Re[Z]
2]

2

o Check the result for a real impedance (resistor)

e Also, in terms of current:

2
: * I
P:%Re[l -V]=%Re[] -]-Z]:%Re[Z]

o4
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Summary

o Complex exponentials are eigen-functions of LTI
systems
~ Steady-state response of LCR circuits are LTI systems

— Phasor analysis allows us to treat all LCR circuits as
simple “resistive” circuits by using the concept of
impedance (admittance)

o Frequency response allows us to completely
characterize a system

— Any mput can be decomposed into either a continuum or
discrete sum of frequency components

— The transfer function is usually plotted in the log-log
domain (Bode plot) — magnitude and phase

55 ~ Location of poles/zeros 1s key

University of California, Berkeley



