EECS 242: Linearization Efficiency Enhancement and Power Combiners

Professor Ali M Niknejad
Advanced Communication Integrated Circuits

University of California, Berkeley
Linearization
Polar modulators are gaining popularity by requiring complex feedback and/or chip to external PA interaction.

Modulation bandwidth is a limiting factor.

In a digital system, the magnitude/phase signal are generated directly and fed into an offset PLL and PA supply voltage.
Feedback Loops with PA

- Need loop gain, stability a big concern, modulation bandwidth
- Envelope feedback only works for AM-AM non-linearity
- Cartesian requires linear mixers and good amplitude/phase matching
- Complexity…
In a modern system a dynamic predistortion circuit can compensate for process/temp variations.

- Can implement predistortion at baseband
- 100k gates = 1 pad
Microwave Feedforward

- Base stations use feedforward linearization since calibariton is a possibility.
- Use couplers
Dynamic PA

- Envelope tracking supply and dynamic class-A
- Efficiency always close to peak efficiency of amplifier (say 30%) regardless of PAR
- Need a very fast DC-DC converter
Power Combining
How Big?

- The amount of power that we can extract from a PA device is limited by the output impedance of the device. As the device is made larger to handle a higher DC current (without compromising the f_T), the lower the output impedance.

- For a “current source” style of PA, eventually the device is so large that power is lost in the device rather than the load. This is the attraction of a switching PA.
Gain vs. Output Power Tradeoff

Operating Power Gain Circles, $f=60\text{GHz}$

- $G_p=7.5\text{dB}$
- $G_p=6.5\text{dB}$
- $G_p=5.5\text{dB}$
- $G_p=4.5\text{dB}$

Constant P_{1dB} Contours
- P_{opt}
- $P_{opt} - 0.5\text{dB}$
- $P_{opt} - 1\text{dB}$
- $P_{opt} - 1.5\text{dB}$
Power Devices (cont)

<table>
<thead>
<tr>
<th>Finger width</th>
<th>MSG</th>
<th>Idc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1μm</td>
<td>7.6dB</td>
<td>25mA</td>
</tr>
<tr>
<td>2μm</td>
<td>8.4dB</td>
<td>47mA</td>
</tr>
<tr>
<td>4μm</td>
<td>6.8dB</td>
<td>94mA</td>
</tr>
</tbody>
</table>

UC Berkeley, EECS 242
But for a non-switching PA we must perform some power combining to use more than one device. This way we can transform the load into a higher impedance seen by each PA.

The power combining networks are lossy and large. We’ll come back to them later.
Can we “wire” PAs together?

- Note that we cannot simply “wire” PAs together since the impedance seen by each PA increases by N if we connect N in parallel:

$$R_{PA} = \frac{V_L}{I_L/N} = N R_L$$

- This means that each PA delivers less power for a fixed swing

$$P_{PA} = \frac{V_{swing}^2}{2R_{PA}}$$

- There is also “load pulling” effects if the sub-PAs are not perfectly in phase
Decompose the AM/PM signal into two PM signals.

The two PM signals can get amplified by two non-linear PA’s. These can be saturated and efficient amplifiers.

By combining the two signals, the amplitude modulation is restored at the antenna.

How to combine signals? Simple current mode will present a time-varying load to each PA. Coupler or isolator will waste power.
Outphasing Math

\[
\cos(A) + \cos(B) = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right)
\]

\[
\cos(\omega t + \phi) + \cos(\omega t - \phi) = 2 \cos(\phi) \cos(\omega t)
\]

\[
\cos(\omega t + \cos^{-1} A(t)) + \cos(\omega t - \cos^{-1} A(t)) = 2 \cos(\cos^{-1} A(t)) \cos(\omega t)
\]

\[
\cos(\omega t + \cos^{-1} A(t)) + \cos(\omega t - \cos^{-1} A(t)) = 2 A(t) \cos(\omega t)
\]

- In theory all we need to do is to compute the inverse cosine of the AM waveform to generate our outphasing signals.
- In practice, we can use a DSP to calculate these signals since the envelope rate is at the modulation rate and digital techniques work well.
- Power combining is the main difficulty.
Doherty Amplifier Concept

- Invented by W.H. Doherty in 1936
- Good power efficiency over a wide range of output power

Must efficiently combine power without increasing V_{swing}

Source: Naratip Wongkomet and P. Gray (UCB)
Quarter wave line used as an impedance inverter. Can be realized with LC equivalent.
Doherty Details

- Small signal region: auxiliary amplifier is off
- When the input crosses the threshold, the action of the auxiliary amplifier is to dynamically lower the load seen by the main PA
- Finally, both amplifiers operate at the peak power point
Doherty Amplifier Operation

Source: Naratip Wongkomet and P. Gray (UCB)

\[Z_m = \frac{Z_o^2}{Z_{mo}} \]

\[Z_{mo} = R_L (1 + I_a/I_1) \]

Auxiliary amplifier actively changes load impedance of the main amplifier

\[V_{in,max} \]

\[I_{max} \]

doherty's efficiency

Typical PA's efficiency

\[V_{out,max}/9 \]

\[P_{out,max} \]
Lumped Doherty Implementation

- Can use lumped elements to realize 90° phase shift
- The CLC line is an impedance inverter that also provides VDD for the aux amp
- The LCL line is embedded into the matching network and provides 90° phase shift
- Simulations show an improved efficiency

Zhao, M. Iwamoto, D. Kimball, L. Larson, P. Asbeck

University of California, San Diego

Copyright © Prof. Niknejad 20
Matching networks are needed to drive output power to the load, which has a fixed impedance.

Large output powers require a large transformation ratio, and low voltage operation means high currents in the CMOS stage (sensitive to series resistance).

30 dBm of output power requires a matching ratio of 100!

\[
R_S > R_L
\]

\[
P_L = m \frac{V_{SW}^2}{2R_L} < m \frac{V_{DD}^2}{2R_L}
\]

\[
P_L < m \cdot \frac{1V^2}{2 \cdot 50\Omega} = m \times 10mW
\]
The power loss of integrated matching networks is important.

The insertion loss can be derived by making some simple approximations.

The final result implies that we should minimize our circuit Q factor and maximize the component Q_c.

\[
P_{in} = P_L + P_{diss}
\]

\[
IL = \frac{P_L}{P_{in}} = \frac{P_L}{P_L + P_{diss}} = \frac{1}{1 + \frac{P_{diss}}{P_L}}
\]

\[
W_m = \frac{1}{4} L\dot{v}_s^2 = \frac{1}{44R_s^2} v_s^2 L
\]

\[
\omega_0 \times W_m = \frac{1}{44R_S} \frac{\omega_0 L}{R_S} = \frac{1}{28R_S} v_s^2 Q = \frac{1}{2} P_L \times Q
\]

\[
P_L = \frac{v_s^2}{2R_S} = \frac{v_s^2}{4 \cdot 2 \cdot R_S} = \frac{v_s^2}{8R_S}
\]

\[
\omega_0(W_m + W_e) = Q \times P_L
\]

\[
P_{diss} = \frac{P_L \cdot Q}{Q_c}
\]

\[
IL = \frac{1}{1 + \frac{Q}{Q_c}}
\]
Multistage Matching

\[Q = \frac{\omega (W_{s1} + W_{s2})}{P_{d1} + P_{d2}} = \frac{\omega W_{s1}}{2P_d} + \frac{\omega W_{s2}}{2P_d} = \frac{Q_1 + Q_2}{2} \]

\[R_{i,\text{opt}} = \sqrt{R_L R_S} \]

\[Q' = \frac{1}{2} \left(\sqrt{\frac{R_i}{R_L}} - 1 + \sqrt{\frac{R_S}{R_i}} - 1 \right) \]

\[Q_{\text{opt}} = \sqrt{\sqrt{\frac{R_S}{R_L}} - 1} \approx m^{1/4} \]

\[\frac{R_{i1}}{R_{lo}} = \frac{R_{i2}}{R_{i1}} = \frac{R_{i3}}{R_{i2}} = \ldots = \frac{R_{hi}}{R_{in}} = 1 + Q^2 \]

\[\frac{R_{i1}}{R_{lo}} \cdot \frac{R_{i2}}{R_{i1}} \cdot \frac{R_{i3}}{R_{i2}} \ldots \cdot \frac{R_{hi}}{R_{in}} = \frac{R_{hi}}{R_{lo}} = (1 + Q^2)^N \]

- Since the Q of each stage is lowered, the insertion can improve
Suppose a power amplifier delivering 100 W of power has an optimal load resistance of .5, but needs to drive a 50 Ω antenna.

Design a matching network assuming that the component Q’s of 30 are available.

First note that a matching factor of $m = 50/.5 = 100$ is needed.

Table above shows that 3 stages is optimum.
Technology Scaling

- Power Enhancement Ratio

\[\text{PER} = r \cdot \eta \]

(source: Aoki, IEEE MTT-S)
Example Class E
- $0.13 \text{ um} \rightarrow V_{\text{PEAK}} = 3 \text{ V}$
- $P_{\text{OUT,50}} = 8 \text{ mW}$
- Required $P_{\text{OUT}} = 100 \text{ mW}$
- $R_{\text{IN}} = 4 \text{ }\Omega$
- $\text{PER} = 50/4 = 12.5$
- Q of 5 $\rightarrow \eta = 32\%$
- Q of 10 $\rightarrow \eta = 65\%$

...For the matching network alone!
- impedance matching is limited
- problem for low-voltage operation

$$\text{PER} = r \cdot \eta$$

source: Reynaert
Quarter wave line is a nice way to impedance match source and load. T-line comes for free since we can use the board trace at high frequency.

- How does this vary with matching ratio?
For FR4 and other lossy dielectrics, the IL can be quite high. Multi-section T-line helps (lower Q) but area is a big constraint.
Transformer Matching

- Simple model of transformer as coupled inductors with series loss.

\[IL = \frac{P_L}{P_L + P_{diss}} \]

\[N = \frac{M}{L_2} = k\sqrt{\frac{L_1}{L_2}} \]

\[Q_L = \frac{\omega L_2}{r_2 + R_L} \]

\[IL = \frac{R_L}{r_1 + r_2 + R_L + (\frac{L_2}{M})^2 r_1 + \frac{r_1(r_2+R_L)^2}{\omega^2 M^2}} \]

- Key result: loss is nearly independent of the matching ratio!

\[IL \approx \frac{R_L}{r_1 + r_2 + R_L + \frac{r_1}{N^2 Q^2}} \]
Simburger and co-authors demonstrated that on-chip transformer can be used to drive large bipolar PA devices.

- Output power ~ 5W, 55% PAE
© Siemens team showed that on-chip transformers were useful for PA interstage matching.
© Can they be used for the output stage as well? … Caltech DAT
Moderately high k factor transformers can be realized using two metal layers.

Different layout styles offer an asymmetric primary/secondary, a symmetric prim/sec, and a fully balanced and symmetric prim/sec.
Transformer Turns Ratio

- With a planar layout, turns ratio can be obtained from omitting turns on the secondary or by connecting secondary turns in parallel
- Parallel connection offers lower loss on secondary
High Turns 3D Ratio Transformers

- A 3D layout allows much more flexibility.
- High turns ratio and higher coupling factor can be implemented in a simple way
Symmetric structures can be used to build baluns.
Baluns are a natural fit in fully differential circuits.
Lumped Modeling of Transformer

- Symmetric 2π model
- RL network models frequency-dependent loss
- Winding capacitance for SRF
- Asymmetric substrate network

Ref: [Chow4], [Mohan], [Cao]
Comparison of Results

- Necessary to match both y, z parameters instead of s-parameters only
- Good match up to high frequencies
Transformer Resonant Modes

- Two modes due to odd and even excitation.
- In “even” mode the coupling capacitor C_c is not excited.

\[\omega^+ = \sqrt{\frac{1}{C_0(L_1 + L_2 + 2M)}} \quad \omega^- = \sqrt{\frac{1}{(C + 2C_c)(L_1 + L_2 - 2M)}} \]
Transformers Comparison

- Paper published at RFIC 2004:
- Compare various transformer layouts
- Define metric that takes into account bandwidth
Planar versus shunt have similar behavior below “resonance” with 2-3 dB of loss.
Series structure has much lower resonance frequency.
Define a new metric: bandwidth over which gain is within 1 dB of “optimal” gain (for a bi-conj. match)

Planar structure has very good bandwidth (50-150%), and other structures are worse, but series structure is significantly worse.
Transmission Line Balun

- Turn parasitic coupling capacitance into a distributed broadband transmission line!
- Excite the differential mode rather than the odd mode.
The voltage at the load is inverted if the length of the line is small (~1/10 wavelength)

Note that line excited with both odd and even mode at source but higher Z0 and loss of line rejects even mode.
LC Coupler

- Lumped 180° coupler
- Low bandwidth (20%)
- Element values

\[
\frac{1}{\omega C} = \omega L = \sqrt{2} Z_0
\]
LC Balun

- Essentially a bridge with phase lead and lag networks.
- Bandwidth? Depends on Q of match since this is just a high-pass and low-pass matching network.

\[
Z_c = \sqrt{R_i R_L} \\
L = \frac{Z_c}{\omega} \quad C = \frac{1}{\omega Z_c}
\]
Measured Lumped Balun

- 20% fractional bandwidth
- IL low due to substrate
- Phase/amplitude balance relatively poor.

An Integrated Double Balanced Mixer on Multilayer Liquid Crystalline Polymer (M-LCP) Based Substrate

Wansuk Yun\(^1\), Vinu Govind\(^1\), Sidharth Dalmia\(^2\), Venky Sundaram\(^1\), Madhavan Swaminathan\(^1\), and George E. White\(^2\)

\(^1\)Georgia Institute of Technology, Electrical and Computer Engineering, Atlanta, GA 30332, U.S.A, 404-385-6417
\(^2\)Jacket Micro Devices, Suite 213, 75 5th Street, Alanta, GA 30308, USA, 404-526-6046
This works as a balun over a very broad band. If length is quarter wavelength, the even mode is rejected at center frequency.

\[G_v = \frac{v_L}{v_s} = \frac{2}{\cos k\ell + j \sin k\ell \frac{Z_0}{2R_S}} = \frac{2}{e^{j k\ell}} = 2e^{-j k\ell} \]
Marchand Balun

- Improved bandwidth
- Less sensitivity to even-mode impedance
- Requires two quarter wave structures.
Theoretically we cannot build a lossless 3 port device with isolation and power combining.

The Wilkinson uses a resistor that is normally “open circuited” (even mode) and does not generate loss.

Effective for high frequency designs or using LC circuit at low frequency.
Use virtual grounds wisely to turn 1:1 coupled lines into a transformer loop.
Unlike inductor Q factor, there is no obvious “silver bullet” FOM for transformers.

For power combining applications, the maximum power gain (bi-conjugate match) has been used as a figure of merit.

For a simple 1:1 transformer, the maximum gain is a function of only the Q and K factors

$$G_{max} = \frac{y_{21}}{y_{12}}(k - \sqrt{k^2 - 1}) = k - \sqrt{k^2 - 1}$$

$$Z = \begin{pmatrix} R_p + j\omega L_p & j\omega M \\ j\omega M & R_8 + j\omega L_8 \end{pmatrix}$$

$$k = \frac{2\Re(z_{22})\Re(z_{11}) - \Re(z_{21}z_{12})}{|z_{21}z_{12}|}$$

$$k = \frac{2R_x^2 + \omega^2 M^2}{\omega^2 M^2} = \frac{2R_x^2 + \omega^2 K^2 L^2}{\omega^2 K^2 L^2}$$

$$G_{max}(Q, K) = 1 + \frac{2}{Q^2 K^2} - 2\sqrt{\frac{1}{Q^4 K^4} + \frac{1}{Q^2 K^2}}$$
Transformers for Power Combining

- Notice that relatively low insertion loss is possible with moderate on-chip Q and K factors, thus allowing fully-integrated transformers.
- Connecting 1:1 transformers in series and shunt, we can perform efficient power combining independent of the number of sections [Caltech DAT architecture]
Transformer Power Combining Layout

- Very simple layout
- Don’t get DAT benefit → have extra “leads” that waste power
- But can turn off individual stages for power back-off
- Can easily scale power by adding more stages: design core driver stage
Fully Integrated Dual Mode CMOS PA

Peak Output Power Mode

Power Back-off Mode
Power Combining and Control

- Use transformer to perform efficient power combining.
- Can also use structure for efficient power back-off to improve average power efficiency.
- At moderate back-off (6 dB), efficiency close to peak level.
Power Control and Efficiency Enhancement

\[\eta_D = \frac{P_{OUTPUT}}{P_{SUPPLY}} = \frac{1}{2} \frac{V_{RF}I_{RF}}{V_{SUPPLY} \cdot I_{DC}} \]

At power back-off
Reduce DC current
Modulate load
In general there is no isolation in the transformer so the load current of one primary will “pull” the impedance of another primary.

It’s only under the special circumstance that all windings are driven in phase that we obtain isolation.
When all four stages are on, each PA sees \(\frac{1}{4} \) of the load.

Suppose 2 stages are turned off. Then the PA’s see \(\frac{1}{2} \) the load. The voltage swing at the output drops, but the voltage on each primary remains the same!

For Class B operation, we can theoretically achieve the same efficiency at back-off.

\[
V_p = \frac{g_m R_L}{4} \cdot V_i = \frac{1}{4} g_m R_L \cdot V_i \\
V_p = \frac{g_m R_L}{2} \cdot V_i / 2 = g_m R_L \cdot V_i / 4 \\
V_{out} = 4V_p = g_m R_L \cdot V_i \\
V_{out} = 2V_p = \frac{g_m R_L V_i}{2}
\]

\[
\eta_B = \frac{\pi V_p}{4 V_{DD}}
\]
Power Back-Off Mode

Say we back-off the input by $\frac{3}{4}$.

If we turn off one amplifier, the load seen by each amplifier is now $\frac{1}{3}$.

But the output voltage is still at the peak optimal value.

The overall efficiency is therefore at the peak value.

$$R = \frac{1}{3} R_L$$

$$A_{unit} = g_m \cdot \frac{1}{3} R_L$$

$$V_o = A_{unit} \cdot V_i = g_m \cdot \frac{1}{3} R_L \cdot \frac{3}{4} V_{i,max} = V_{o,max}$$

$$\eta_{overall} = \eta_{unit} = \eta_{max}$$

$$A_{overall} = N \cdot A_{unit} = g_m \cdot R_L$$

$$P_{out} = N \cdot P_{unit} = 3 \cdot \frac{1}{2} \frac{V_o^2}{R_L} = \frac{9}{2} \frac{V_o^2}{R_L} = \frac{9}{16} P_{peak}$$
A 1.2V, 2.4GHz Fully Integrated Linear CMOS PA with Efficiency Enhancement

CICC 2006
Gang Liu¹,², Tsu-Jae King Liu²
Ali M. Niknejad¹,²

Berkeley Wireless Research Center¹
Electrical Engineering and Computer Sciences²
University of California, Berkeley, CA, USA

UC Berkeley, EECS 242
- Combing power from 4 unit amplifiers
- Centering at 2.4-GHz
- Output matching tuned by switched cap at back-off
Schematic of Each Unit Amplifier

- V_{DD}
- 5-Ω
- 60-pF
- C1
- 2.4-mm/0.16-μm
- 7-Ω
- 2-kΩ
- Bond-wire
- Gnd
Cascode Layout

(a)

V_{cas}

m2

V_{bias}

m1

(b)

m1

m2

(c)

m1

m2
Die Microphotograph
Transformer & Cap Array
Single-Tone Test

Freq = 2.4-GHz, Peak Power Mode
Two-Tones Test

Freq = 2.4-GHz, 1-kHz tone spacing, Peak Power Mode

IM3 = -29dBc @ 18dBm
Measured Efficiency at Back-Off

Note: at 2.5-dB back-off, one unit amplifier was turned off.
Measurements with EDGE Signals

Freq = 2.4-GHz, Peak Power Mode

Channel Power: 20.53 dBm / 2.0000 MHz
Power Spectral Density: -42.48 dBm/Hz
Measurements with 802.11g Signals

\[P_{out} = 14.5\text{-dBm} \quad \text{EVM} = 4.48\% \]

\[\text{Freq} = 2.4\text{-GHz, Peak Power Mode} \]
EVM vs Output Power

![Graph showing EVM vs Output Power](image-url)
Table of Performance

<table>
<thead>
<tr>
<th>Technology</th>
<th>0.13-µm RF CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>1.2-V</td>
</tr>
<tr>
<td>DC Current</td>
<td>114-mA</td>
</tr>
<tr>
<td>P_{-1dB}</td>
<td>24-dBm</td>
</tr>
<tr>
<td>Drain efficiency</td>
<td>25%</td>
</tr>
<tr>
<td>Saturated Power</td>
<td>27-dBm</td>
</tr>
<tr>
<td>Drain efficiency</td>
<td>32%</td>
</tr>
</tbody>
</table>
A 5.8 GHz Linear Power Amplifier in a Standard 90nm CMOS Process using a 1V Power Supply

RFIC 2007

Peter Haldi, Debopriyo Chowdhury, Gang Liu and Ali M. Niknejad

Berkeley Wireless Research Center, Dept. of EECS, UC Berkeley, Berkeley, CA 94704, USA
Figure “8” style layout minimized the impact of lead inductance

Lateral coupling used since top metal layer is most conductive and most distant from substrate

Very good isolation characteristic due to flux inversion
Using two primary windings
- Improved coupling
- Lower loss (current crowding at edge of conductors)
- More symmetric primary/secondary for optimal power transfer
Prototype PA in Digital CMOS

- Four stage differential design
- Single-ended 50Ω output
- Thin oxide 90nm transistors
Peak power is 24 dBm. Good match to simulation up to 1dB compression point.
Measured Efficiency

- **Measured**
- **Simulation**

27%
- IM3 = 28 dBc at output power of 20.5 dBm (200 MHz)
- IM3 has tone spacing dependence due to lack of good bypass (class AB stage). Verified with packaged version.
Output Power vs Frequency

Output Power [dBm]

Frequency [GHz]

0.9 dB
CMOS “digital” Prototype

<table>
<thead>
<tr>
<th>Process</th>
<th>Freq. (GHz)</th>
<th>V_{dd} (V)</th>
<th>P_{1dB} (dBm)</th>
<th>IM3 (dBc)</th>
<th>Gain (dB)</th>
<th>η (%)</th>
<th>Ref.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35(\mu)m CMOS</td>
<td>1.91</td>
<td>2.5</td>
<td>23.5</td>
<td>24.6</td>
<td>35.3%</td>
<td>[19]</td>
<td>with driver, ext. RF chokes</td>
<td></td>
</tr>
<tr>
<td>0.5(\mu)m SiGe BiCMOS</td>
<td>1.75</td>
<td>3.3</td>
<td>24dBm</td>
<td>37dBc</td>
<td>23.9dB</td>
<td>29.2%</td>
<td>[20]</td>
<td>with driver, linearized</td>
</tr>
<tr>
<td>0.18(\mu)m standard CMOS</td>
<td>2.4</td>
<td>3.3</td>
<td>24.5dBm</td>
<td>19.8dB</td>
<td>31.8%</td>
<td>[9]</td>
<td>with driver</td>
<td></td>
</tr>
<tr>
<td>0.13(\mu)m CMOS</td>
<td>2.4</td>
<td>1.2</td>
<td>24dBm</td>
<td>29dBc</td>
<td>10dB</td>
<td>25%</td>
<td>[8]</td>
<td></td>
</tr>
<tr>
<td>0.09(\mu)m standard CMOS</td>
<td>5.2-5.8</td>
<td>1</td>
<td>23.3dBm</td>
<td>30.5dBc</td>
<td>13.8dB</td>
<td>26%</td>
<td>this work</td>
<td>simulated results</td>
</tr>
</tbody>
</table>

Table 5.3: Comparison between state of the art linear power amplifiers.

- New transformer layout has simulated efficiency of 75%
- State-of-the-art performance of 5 GHz linear PA
 - 24 dBm with 27% efficiency
IEEE 802.16 standard (Wireless MAN)
Wireless data over long distances in a variety of ways
Two-Stage WiMAX CMOS PA

Ref: [Chow2]
Output Stage Design

- Thick-oxide CG stage ($V_{DD} = 3.3V$)
- Dynamic gate biasing
- Capacitive divider
- Differential → does not affect small signal gain
Meeting the WiMAX Mask

- Average $P_{out} = 22.76$ dBm
- Average drain efficiency $= 15\%$, Average PAE $= 12\%$
- Power of 2nd, 3rd and higher harmonics also meet FCC mask \Rightarrow possible to eliminate harmonic filter
Back-Off Mode Implementation

- Bottom stage powered-down for low-power mode
- $V_{ctrl} = 0$ in high-power mode and $2 \times V_{DD}$ in low-power mode
Low Power Mode

![Graph showing PAE (Power Added Efficiency) vs. Average Output Power in dBm. The graph compares Low-Power Mode and High-Power Mode. The y-axis represents PAE in percentage, ranging from 0 to 12%. The x-axis represents Average Output Power in dBm, ranging from 10 to 24 dBm. The graph indicates that for a given output power, the PAE is higher in the Low-Power Mode.]
Common-Mode Stability

- Pseudo-differential architecture → common-mode oscillations possible
- Need to consider ground & supply inductances, bypass network
A Simpler Structure

\[Z_{IN} = \frac{j(\omega L - \frac{1}{\omega C_{gd}})}{1 + j\omega g_m L_D} \]

- If \((1/\omega C_{gd}) \gg (\omega L) \),

\[Z_{IN} = \frac{1}{(1 + \omega g_m L_D)^2} \left[\frac{1}{j\omega C_{gd}} - \frac{g_m L_D}{C_{gd}} \right] \]

Ref: [Cripps]
For oscillation, $[A]$ is singular

Ref: [Chow3]
Stabilizing the PA

- Resistor in series with gate
- Resistor in series with bypass capacitor
- Staggered-RC bypass network
- Series RC-pair
Transistors have higher gain at lower frequency, transformers are wideband

RC network → loss around 35GHz without impacting 60GHz

Ref: [Kom]