A. M. Niknejad

EECS 142

|l

egrated (s Tor Communicat”

Lecture 8: Distortion Metrics

Prof. Ali M. Niknejad

University of California, Berkeley
Copyright (© 2005 by Ali M. Niknejad

University of California, Berkeley

|

EECS 142 Lecture 8 p. 1/26



Output Waveform

- N

# In general, then, the output waveform is a Fourier series

Vo = Vol coswit + VOQ cos 2wit + Vog cos w1t + ...
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Fractional Harmonic Distortion

- N

® The fractional second-harmonic distortion Is a
commonly cited metric

ampl of second harmonic
ampl of fund

HDy =

# |If we assume that the square power dominates the
second-harmonic

S2

a271
HDy =

a191

or

an
HDy = 5—5;

ai
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Third Harmonic Distortion

- N

# The fractional third harmonic distortion is given by

ampl of third harmonic

HDs5 =
; ampl of fund
# If we assume that the cubic power dominates the third
harmonic
St
agf
HD3 = ——
k a151
or
1 a/3 9
HD3 =-—-28
k 4CL1 !
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Output Referred Harmonic Distortion
B -

# |n terms of the output signal S,,,, If we again neglect
gain expansion/compression, we have S,,,, = a1.51

1 a9

HD2 — A Som
20,%
1@3 2

HDs=--58
4@? om

# On a dB scale, the second harmonic increases linearly
with a slope of one Iin terms of the output power
whereas the thrid harmonic increases with a slope of 2.
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Sighal Power

- N

# Recall that a general memoryless non-linear system will
produce an output that can be written in the following
form

A

Vo(t) = Vo1 coswit + Voo cos 2wit + Vi3 cos 3wyt + . . .

# By Parseval’s theorem, we know the total power in the
signal is related to the power in the harmonics

/ v () dt = / Z V,; cos(jwit) Z Vo cos(kwit)dt
T T
7 k

— Z zk: /T Voj cos(jwlt)VOk cos(kw1t)dt
J
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Power In Distortion

- N

# By the orthogonality of the harmonics, we obtain
Parseval’'s Them

/ (At =Y Y S0uVoVe =5y V2
T : :
j k J
# The power In the distortion relative to the fundamental

power is therefore given by

Power in Distortion vy o VA
Power in Fundamental V2 = V2

— HD5+ HD5 + HD? + - -
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Total Harmonic Distortion

-

# We define the Total Harmonic Distortion (T'H D) by the
following expression

THD = \/HD} + HD} + - --

# Based on the particular application, we specify the
maximum tolerable TTH D

# Telephone audio can be pretty distorted (THD < 10%)

# High quality audio is very sensitive (T HD < 1% to
THD < .001%)

# Video is also pretty forgiving, THD < 5% for most
applications

L.o Analog Repeaters < .001%. RF Amplifiers < 0.1% J
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Intermodulation Distortion

- N

# So far we have characterized a non-linear system for a
single tone. What if we apply two tones

S; = S1coswit + So coswoyt

Sy = a15; + aS? + azS3 + - -
= a151 coswit + a1S9 coswat + ag(Sfi)g +oe

# The second power term gives

agS% cos® w1t + agSS cos® wot + 2a2S1S5 cos wit cos wat
2 S2
= a271(cos 2wt +1) + agf(cos 2ot + 1) +

\— 125153 (cos(wy + wa)t — cos(wi — wa)t) J
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Second Order Intermodulation

-

# The last term cos(w; + ws)t IS the second-order
intermodulation term

#® The intermodulation distortion 7 M5 1s defined when the
two input signals have equal amplitude S; = S| = S5

Amp of Intermod az ¢

I My =
. Amp of Fund ai

# Note the relation between I M, and H Do

IMo =2HDy = HDo + 6dB

|
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>

Practical Effects of / M,
-

This term produces distortion at a lower frequency
w1 — w9 and at a higher frequency wi + wo

Example: Say the receiver bandwidth is from
800MHz — 2.4GHz and two unwanted interfering signals
appear at S0O0MHz and 900MHz.

Then we see that the second-order distortion will
produce distortion at 100MHz and 1.7GHz. Since 1.7GHz
IS In the receiver band, signals at this frequency will be
corrupted by the distortion.

A weak signal in this band can be “swamped” by the
distortion.

Apparently, a “narrowband” system does not suffer from
IM>? Or does it ? J
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Low-IF Recelver

-

# In a low-IF or direct conversion receiver, the signal is
down-converted to a low intermediate frequency f;r

#® Since w; — wy can potentially produce distortion at low
frequency, 1M, IS very important in such systems

# Example: A narrowband system has a receiver
bandwidth of 1.9GHz - 2.0GHz. A sharp input filter
eliminates any interference outside of this band. The IF
frequency is 1IMHz

# |magine two interfering signals appear at f; = 1.910GHz
and fz = 1.911GHz. Notice that f2 — f1 = f]F

# Thus the output of the amplifier/mixer generate
distortion at the IF frequency, potentially disrupting the
communication. J
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Cubic IM
-

# Now let’s consider the output of the cubic term
a3s? = agz(S1 coswit + S cos wat)?

# Let’s first notice that the first and last term in the
expansion are the same as the cubic distortion with a

single input

3

i (cos 3wi 2t + 3 coswi at)

® The cross terms look like

3
(2> a3S1 S% cos wit cos® wot

|
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Third Order IM
=

# Which can be simplified to

3 cos wit cos® wol = 5 COs w1t(1 + cos2wat) =

3 3
= 5 cos w1t + 1 cos(2wg £ wy)

# The interesting term is the intermodulation at 2ws + wy
# By symmetry, then, we also generate a term like

3
agS%SQZ cos(2w1 & wo)

#® Notice that If w; ~ w9, then the intermodulation

\— 2W9 — W1 ~ Wy J
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Inband IM3 Distortion

A
Sw) Interfering Signals
wanted - S . .
\ | 1 2 distortion product
- |
\\\\ : \\*
!
LT
| Sh
|
: ety \ w
wy S W1 w2
20«)1 — W9 2&)2 — W1

# Now we see that even if the system is narrowband, the
output of an amplifier can contain in band
intermodulation due to 7 Ms.

# This is in contrast to /M5 where the frequency of the
iIntermodulation was at a lower and higher frequency.
The I M35 frequency can fall in-band for two in-band J

L Interferer
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Definition of [ M5

- N

® We define I M3 In a similar manner for S; = S = 55

Amp of Third Intermod 3 a3

SQ
Amp of Fund T 4aq

I M3 =

#® Note the relation between I M3 and H Ds

IMs =3HDs = HD3+ 10dB

o |
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Complete Two-Tone Response

S(w)
Wy — W1
A A
W2 Wl Wi + w2
I 2(,02 — 2w1 T
T TTT TTT +TTT TTT+ ATTTTTTA s o
w1 o 2wy 2w 3w 3w
/,// I// 1 2 \\\ \\\\ 3&]1 - wz 3w2 - W]_ le + w2 2w2 _.I_ wl
2w1 - w2 20:}2 — wl\\
3wi — 2wo 3wa — 2wy

® We have so far identified the harmonics and M, and
I M3 products

# A more detailed analysis shows that an order n
non-linearity can produce intermodulation at
frequencies jw; + kwy Where j + k =n

L.’ All tones are spaced by the difference wy — w;y

|
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Distortion of AM Signals
B -

# Consider a simple AM signal (modulated by a single
tone)
s(t) = Sa(1 + m cos wpt) cos wat

® where the modulation index m < 1. This can be written
as

s(t) = Sz coswat + % cos(wy — wpm )t + % cos(wa + wpm )t

® The first term Is the RF carrier and the last terms are
the modulation sidebands

o |
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Cross Modulation

Cross modulation occurs in AM systems (e.g. video
cable tuners)

The modulation of a large AM signal transfers to
another carrier going thru the same amp

S; = S1coswit + So(1 + mcoswpt) cos wat
— N 4

N

wanted Interferer

CM occurs when the output contains a term like
K (14 0 coswmt) coswit

Where § Is called the transferred modulation index

-

|
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Cross Modulation (cont)

- N

® For S, =a15; +asS? +a3S? + - - -, the term a2 S? does
not produce any CM

# The term
a3S? = -+ + 3agzSy coswit (Sa(1 + m coswpt) cos wat)? is
expanded to

2 2

— .. 4 3035155 cos wit(1 + 2m cos wpt + m? cos® wpt) X

2(1 + cos 2wat)
# Grouping terms we have in the output

So=--+a151(1+ S@ng cOS wyt) coswit
ai

o |
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CM Definition

—>

unmodulated waveform (input) modulated waveform due to CM

Transferred Modulation Index

CM = . :
Incoming Modulation Index

OM =3852 = 47 M,
ai

= ]Mg(dB) + 12dB
= 12H D3 = HDg(dB) + 22dB

|
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Distortion of BJT Amplifiers
- -

Voo
SR # Consider the CE BJT
o v, amplifier shown. The
L biasing Is omitted for
+? '\l clarity.

# The output voltage is simply
Vo =Voco — loRe

# Therefore the distortion is generated by I~ alone.
Recall that

B Io = Ige?Vee/kT o
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BJT CE Distortion (cont)

- N

# Now assume the input Vg = v; + Vi, where Vj Is the
bias point. The current is therefore given by

# Using a Taylor expansion for the exponential

1 1
r =2 = .3
e —1—|—ZC—|-2!CL’ —|—3!ZC +

V; 1 [/ v, 2 1 [/ v, s
I~=71~(1+ 214+ 222 i
¢ Q(+VT+2(VT> +6<VT)+ )

o |

A. M. Niknejad University of California, Berkeley EECS 142 Lecture 8 p. 23/26



BJT CE Distortion (cont)

-

# Define the output signal i, = Ic — Ig

2 1
le = q)]@?}g—l——(q

=V

® Compare to S, = a15; + a2S? + azS? + - -

A. M. Niknejad
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_ 4o _
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1 /g \?
— (L)
2 Q(kTJ Q
1 /g3
— (LY
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Example: BJT HD2
- . -

o For any BJT (Si, SiGe, Ge, GaAs), we have the
following result
1 qu
4 kT
#® where v; Is the peak value of the input sine voltage

For v; = 10mV, HD, = 0.1 = 10%

# We can also express the distortion as a function of the
output current swing i,

HDy =

°

1 ap 1 i,
HDy = =28, =--%
2T 2427 T 41

L’ For ’c = 0.4, HDy = 10% J
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Example: BJT IM3
-

f’ Let’s see the maximum allowed signal for IM3 < 1%

3a3 1 [ qv; :
IM —2 G2 =
ST 4t T8 <kT>

#® Solve v; = 7.3mV. That’s a pretty small voltage. For
practical applications we'd like to improve the linearity of
this amplifier.

o |
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