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Output Waveform

In general, then, the output waveform is a Fourier series

vo = V̂o1 cos ω1t + V̂o2 cos 2ω1t + V̂o3 cos 3ω1t + . . .
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Fractional Harmonic Distortion

The fractional second-harmonic distortion is a
commonly cited metric

HD2 =
ampl of second harmonic

ampl of fund

If we assume that the square power dominates the
second-harmonic

HD2 =
a2

S2
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a1S1

or
HD2 = 1
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Third Harmonic Distortion

The fractional third harmonic distortion is given by

HD3 =
ampl of third harmonic

ampl of fund

If we assume that the cubic power dominates the third
harmonic

HD3 =
a3

S2
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Output Referred Harmonic Distortion

In terms of the output signal Som, if we again neglect
gain expansion/compression, we have Som = a1S1

HD2 =
1

2

a2

a2
1

Som

HD3 =
1

4

a3

a3
1

S2

om

On a dB scale, the second harmonic increases linearly
with a slope of one in terms of the output power
whereas the thrid harmonic increases with a slope of 2.
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Signal Power

Recall that a general memoryless non-linear system will
produce an output that can be written in the following
form

vo(t) = V̂o1 cos ω1t + V̂o2 cos 2ω1t + V̂o3 cos 3ω1t + . . .

By Parseval’s theorem, we know the total power in the
signal is related to the power in the harmonics

∫

T
v2(t)dt =

∫

T

∑

j

V̂oj cos(jω1t)
∑

k

V̂ok cos(kω1t)dt

=
∑

j

∑

k

∫

T
V̂oj cos(jω1t)V̂ok cos(kω1t)dt
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Power in Distortion

By the orthogonality of the harmonics, we obtain
Parseval’s Them

∫

T
v2(t)dt =

∑

j

∑

k

1

2
δjkV̂ojV̂ok = 1

2

∑

j

V̂ 2

oj

The power in the distortion relative to the fundamental
power is therefore given by

Power in Distortion
Power in Fundamental

=
V 2

o2

V 2
o1

+
V 2

o3

V 2
o1

+ · · ·

= HD2

2 + HD2

3 + HD2

4 + · · ·
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Total Harmonic Distortion

We define the Total Harmonic Distortion (THD) by the
following expression

THD =
√

HD2
2

+ HD2
3

+ · · ·

Based on the particular application, we specify the
maximum tolerable THD

Telephone audio can be pretty distorted (THD < 10%)

High quality audio is very sensitive (THD < 1% to
THD < .001%)

Video is also pretty forgiving, THD < 5% for most
applications

Analog Repeaters < .001%. RF Amplifiers < 0.1%
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Intermodulation Distortion

So far we have characterized a non-linear system for a
single tone. What if we apply two tones

Si = S1 cos ω1t + S2 cos ω2t

So = a1Si + a2S
2

i + a3S
3

i + · · ·

= a1S1 cos ω1t + a1S2 cos ω2t + a3(Si)
3 + · · ·

The second power term gives

a2S
2

1 cos2 ω1t + a2S
2

2 cos2 ω2t + 2a2S1S2 cos ω1t cos ω2t

= a2

S2
1

2
(cos 2ω1t + 1) + a2

S2
2

2
(cos 2ω2t + 1) +

a2S1S2 (cos(ω1 + ω2)t − cos(ω1 − ω2)t)
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Second Order Intermodulation

The last term cos(ω1 ± ω2)t is the second-order
intermodulation term

The intermodulation distortion IM2 is defined when the
two input signals have equal amplitude Si = S1 = S2

IM2 =
Amp of Intermod

Amp of Fund
=

a2

a1

Si

Note the relation between IM2 and HD2

IM2 = 2HD2 = HD2 + 6dB
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Practical Effects of IM2

This term produces distortion at a lower frequency
ω1 − ω2 and at a higher frequency ω1 + ω2

Example: Say the receiver bandwidth is from
800MHz − 2.4GHz and two unwanted interfering signals
appear at 800MHz and 900MHz.

Then we see that the second-order distortion will
produce distortion at 100MHz and 1.7GHz. Since 1.7GHz
is in the receiver band, signals at this frequency will be
corrupted by the distortion.

A weak signal in this band can be “swamped” by the
distortion.

Apparently, a “narrowband” system does not suffer from
IM2? Or does it ?
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Low-IF Receiver

In a low-IF or direct conversion receiver, the signal is
down-converted to a low intermediate frequency fIF

Since ω1 − ω2 can potentially produce distortion at low
frequency, IM2 is very important in such systems

Example: A narrowband system has a receiver
bandwidth of 1.9GHz - 2.0GHz. A sharp input filter
eliminates any interference outside of this band. The IF
frequency is 1MHz

Imagine two interfering signals appear at f1 = 1.910GHz
and f2 = 1.911GHz. Notice that f2 − f1 = fIF

Thus the output of the amplifier/mixer generate
distortion at the IF frequency, potentially disrupting the
communication.
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Cubic IM

Now let’s consider the output of the cubic term

a3s
3

i = a3(S1 cos ω1t + S2 cos ω2t)
3

Let’s first notice that the first and last term in the
expansion are the same as the cubic distortion with a
single input

a3S
3
1,2

4
(cos 3ω1,2t + 3 cos ω1,2t)

The cross terms look like
(

3

2

)

a3S1S
2

2 cos ω1t cos2 ω2t
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Third Order IM

Which can be simplified to

3 cos ω1t cos2 ω2t =
3

2
cos ω1t(1 + cos 2ω2t) =

=
3

2
cos ω1t +

3

4
cos(2ω2 ± ω1)

The interesting term is the intermodulation at 2ω2 ± ω1

By symmetry, then, we also generate a term like

a3S
2

1S2

3

4
cos(2ω1 ± ω2)

Notice that if ω1 ≈ ω2, then the intermodulation
2ω2 − ω1 ≈ ω1

A. M. Niknejad University of California, Berkeley EECS 142 Lecture 8 p. 14/26 – p. 14/26



Inband IM3 Distortion

ω1 ω2ω3

2ω2 ω12ω1 ω2

S(ω)

ω

Interfering Signals

wanted
distortion product

Now we see that even if the system is narrowband, the
output of an amplifier can contain in band
intermodulation due to IM3.

This is in contrast to IM2 where the frequency of the
intermodulation was at a lower and higher frequency.
The IM3 frequency can fall in-band for two in-band
interferer
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Definition of IM3

We define IM3 in a similar manner for Si = S1 = S2

IM3 =
Amp of Third Intermod

Amp of Fund
=

3

4

a3

a1

S2

i

Note the relation between IM3 and HD3

IM3 = 3HD3 = HD3 + 10dB
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Complete Two-Tone Response

ω1 ω2

2ω2

− ω12ω1

− ω2

S(ω)

ω

3ω2

− 2ω13ω1

− 2ω2

2ω1 2ω2

ω1 + ω2
ω2

− ω1

3ω2

− ω13ω1

− ω2

3ω13ω2

2ω1 + ω2 2ω2 + ω1

2ω2

− 2ω1

ω2

− ω1

We have so far identified the harmonics and IM2 and
IM3 products

A more detailed analysis shows that an order n

non-linearity can produce intermodulation at
frequencies jω1 ± kω2 where j + k = n

All tones are spaced by the difference ω2 − ω1
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Distortion of AM Signals

Consider a simple AM signal (modulated by a single
tone)

s(t) = S2(1 + m cos ωmt) cos ω2t

where the modulation index m ≤ 1. This can be written
as

s(t) = S2 cos ω2t +
m

2
cos(ω2 − ωm)t +

m

2
cos(ω2 + ωm)t

The first term is the RF carrier and the last terms are
the modulation sidebands
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Cross Modulation

Cross modulation occurs in AM systems (e.g. video
cable tuners)

The modulation of a large AM signal transfers to
another carrier going thru the same amp

Si = S1 cos ω1t
︸ ︷︷ ︸

wanted

+ S2(1 + m cos ωmt) cos ω2t
︸ ︷︷ ︸

interferer

CM occurs when the output contains a term like

K(1 + δ cos ωmt) cos ω1t

Where δ is called the transferred modulation index
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Cross Modulation (cont)

For So = a1Si + a2S
2
i + a3S

3
i + · · · , the term a2S

2
i does

not produce any CM

The term
a3S

3
i = · · · + 3a3S1 cos ω1t (S2(1 + m cos ωmt) cos ω2t)

2 is
expanded to

= · · · + 3a3S1S
2

2 cos ω1t(1 + 2m cos ωmt + m2 cos2 ωmt)×

1

2
(1 + cos 2ω2t)

Grouping terms we have in the output

So = · · · + a1S1(1 + 3
a3

a1

S2

2m cos ωmt) cos ω1t
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CM Definition

unmodulated waveform (input) modulated waveform due to CM

CM =
Transferred Modulation Index
Incoming Modulation Index

CM = 3
a3

a1

S2

2 = 4IM3

= IM3(dB) + 12dB

= 12HD3 = HD3(dB) + 22dB
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Distortion of BJT Amplifiers

+
vs

RL

vo

VCC

Consider the CE BJT
amplifier shown. The
biasing is omitted for
clarity.

The output voltage is simply

Vo = VCC − ICRC

Therefore the distortion is generated by IC alone.
Recall that

IC = ISeqVBE/kT
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BJT CE Distortion (cont)

Now assume the input VBE = vi + VQ, where VQ is the
bias point. The current is therefore given by

IC = ISe
VQ

VT

︸ ︷︷ ︸

IQ

e
vi
VT

Using a Taylor expansion for the exponential

ex = 1 + x +
1

2!
x2 +

1

3!
x3 + · · ·

IC = IQ(1 +
vi

VT
+

1

2

(
vi

VT

)2

+
1

6

(
vi

VT

)3

+ · · · )
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BJT CE Distortion (cont)

Define the output signal ic = IC − IQ

ic =
IQ

VT
vi +

1

2

( q

kT

)2

IQv2

i +
1

6

( q

kT

)3

IQv3

i + · · ·

Compare to So = a1Si + a2S
2
i + a3S

3
i + · · ·

a1 =
qIQ

kT
= gm

a2 =
1

2

( q

kT

)2

IQ

a3 =
1

6

( q

kT

)3

IQ

A. M. Niknejad University of California, Berkeley EECS 142 Lecture 8 p. 24/26 – p. 24/26



Example: BJT HD2

For any BJT (Si, SiGe, Ge, GaAs), we have the
following result

HD2 =
1

4

qv̂i

kT

where v̂i is the peak value of the input sine voltage

For v̂i = 10mV, HD2 = 0.1 = 10%

We can also express the distortion as a function of the
output current swing îc

HD2 =
1

2

a2

a2
1

Som =
1

4

îc

IQ

For îc
IQ

= 0.4, HD2 = 10%
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Example: BJT IM3

Let’s see the maximum allowed signal for IM3 ≤ 1%

IM3 =
3

4

a3

a1

S2

1 =
1

8

(
qv̂i

kT

)2

Solve v̂i = 7.3mV. That’s a pretty small voltage. For
practical applications we’d like to improve the linearity of
this amplifier.
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