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• Voltages and currents are difficult to measure directly at microwave freq. Z matrix
requires “opens”, and it’s hard to create an ideal open (parasitic capacitance and
radiation). Likewise, a Y matrix requires “shorts”, again ideal shorts are impossible
at high frequency due to the finite inductance.

• Many active devices could oscillate under the open or short termination.

• S parameters are easier to measure at high frequency. The measurement is direct
and only involves measurement of relative quantities (such as the SWR or the
location of the first minima relative to the load).

• It’s important to realize that although we associate S parameters with high
frequency and wave propagation, the concept is valid for any frequency.
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Power Flow in an One-Port

•• The concept of scattering parameters is very closely related to the concept of
power flow. For this reason, we begin with the simple observation that the power
flow into a one-port circuit can be written in the following form

Pin = Pavs − Pr

• where Pavs is the available power from the source. Unless otherwise stated, let us
assume sinusoidal steady-state. If the source has a real resistance of Z0, this is
simply given by

Pavs =
V 2

s

8Z0

• Of course if the one-port is conjugately matched to the source, then it will draw the
maximal available power from the source. Otherwise, the power Pin is always less
than Pavs, which is reflected in our equation. In general, Pr represents the wasted
or untapped power that one-port circuit is “reflecting” back to the source due to a
mismatch. For passive circuits it’s clear that each term in the equation is positive
and Pin ≥ 0.
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Power Absorbed by One-Port

• The complex power absorbed by the one-port is given by

Pin =
1

2
(V1 · I∗1 + V ∗

1 · I1)

• which allows us to write

Pr = Pavs − Pin =
V 2

s

4Z0
− 1

2
(V1I∗1 + V ∗

1 I1)

• the factor of 4 instead of 8 is used since we are now dealing with complex power.
The average power can be obtained by taking one half of the real component of
the complex power. If the one-port has an input impedance of Zin, then the power
Pin is expanded to

Pin =
1

2

„

Zin

Zin + Z0
Vs · V ∗

s

(Zin + Z0)∗
+

Z∗
in

(Zin + Z0)∗
V ∗

s · Vs

(Zin + Z0)

«

• which is easily simplified to (where we have assumed Z0 is real)

Pin =
|Vs|2
2Z0

„

Z0Zin + Z∗
inZ0

|Zin + Z0|2
«
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Definition of Reflection Coefficient
• With the exception of a factor of 2, the premultiplier is simply the source available

power, which means that our overall expression for the reflected power is given by

Pr =
V 2

s

4Z0

„

1 − 2
Z0Zin + Z∗

inZ0

|Zin + Z0|2
«

which can be simplified

Pr = Pavs

˛

˛

˛

˛

Zin − Z0

Zin + Z0

˛

˛

˛

˛

2

= Pavs|Γ|2

where we have defined Γ, or the reflection coefficient, as

Γ =
Zin − Z0

Zin + Z0

• From the definition it is clear that |Γ| ≤ 1, which is just a re-statement of the
conservation of energy implied by our assumption of a passive load.
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Scattering Parameter
• This constant Γ, also called the scattering parameter of a one-port, plays a very

important role. On one hand we see that it is has a one-to-one relationship with
Zin. Given Γ we can solve for Zin by inverting the above equation

Zin = Z0
1 + Γ

1 − Γ

which means that all of the information in Zin is also in Γ. Moreover, since |Γ| < 1,
we see that the space of the semi-infinite space of all impedance values with real
positive components (the right-half plane) maps into the unit circle. This is a great
compression of information which allows us to visualize the entire space of
realizable impedance values by simply observing the unit circle. We shall find wide
application for this concept when finding the appropriate load/source impedance
for an amplifier to meet a given noise or gain specification.

• More importantly, Γ expresses very direct and obviously the power flow in the
circuit. If Γ = 0, then the one-port is absorbing all the possible power available
from the source. If |Γ| = 1 then the one-port is not absorbing any power, but rather
“reflecting” the power back to the source. Clearly an open circuit, short circuit, or a
reactive load cannot absorb net power. For an open and short load, this is obvious
from the definition of Γ. For a reactive load, this is pretty clear if we substitute
Zin = jX

|ΓX | =

˛

˛

˛

˛

jX − Z0

jX + Z0

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

˛

˛

q

X2 + Z2
0

q

X2 + Z2
0

˛

˛

˛

˛

˛

˛

˛

= 1
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Relation between Z andΓ

• The transformation between impedance and Γ is a well known mathematical
transform (see Bilinear Transform). It is a conformal mapping (meaning that it
preserves angles) which maps vertical and horizontal lines in the impedance plane
into circles. We have already seen that the jX axis is mapped onto the unit circle.
Since |Γ|2 represents power flow, we may imagine that Γ should represent the flow
of voltage, current, or some linear combination thereof. Consider taking the square
root of the basic equation we have derived

p

Pr = Γ
p

Pavs

where we have retained the positive root. We may write the above equation as

b1 = Γa1

where a and b have the units of square root of power and represent signal flow in
the network. How are a and b related to currents and voltage?
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Definition ofa andb

• Let

a1 =
V1 + Z0I1

2
√

Z0

and

b1 =
V1 − Z0I1

2
√

Z0

It is now easy to show that for the one-port circuit, these relations indeed represent
the available and reflected power:

|a1|2 =
|V1|2
4Z0

+
Z0|I1|2

4
+

V ∗
1 · I1 + V1 · I∗1

4

Now substitute V1 = ZinVs/(Zin + Z0) and I1 = Vs/(Zin + Z0) we have

|a1|2 =
|Vs|2
4Z0

|Zin|2
|Zin + Z0|2

+
Z0|Vs|2

4|Zin + Z0|2
+

|Vs|2
4Z0

Z∗
inZ0 + ZinZ0

|Zin + Z0|2

or

|a1|2 =
|Vs|2
4Z0

„ |Zin|2 + Z2
0 + Z∗

inZ0 + ZinZ0

|Zin + Z0|2
«

=
|Vs|2
4Z0

„ |Zin + Z0|2
|Zin + Z0|2

«

= Pavs
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Relationship betwena/b and Power Flow
• In a like manner, the square of b is given by many similar terms

|b1|2 =
|Vs|2
4Z0

„ |Zin|2 + Z2
0 − Z∗

inZ0 − ZinZ0

|Zin + Z0|2
«

= Pavs

˛

˛

˛

˛

|Zin − Z0

Zin + Z0

˛

˛

˛

˛

2

= Pavs|Γ|2

= |a1|2|Γ|2

as expected. We can now see that the expression b = Γ · a is analogous to the
expression V = Z · I or I = Y ·V and so it can be generalized to an N -port circuit.
In fact, since a and b are linear combinations of v and i, there is a one-to-one
relationship between the two. Taking the sum and difference of a and b we arrive at

a1 + b1 =
2V1

2
√

Z0
=

V1√
Z0

which is related to the port voltage and

a1 − b1 =
2Z0I1

2
√

Z0
=
p

Z0I1

which is related to the port current.
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Incident and Scattering Waves

• Let’s define the vector v+ as the incident “forward” waves on each transmission
line connected to the N port. Define the reference plane as the point where the
transmission line terminates onto the N port.

• The vector v− is then the reflected or “scattered” waveform at the location of the
port.

v+ =

0

B

B

B

B

@

V +
1

V +
2

V +
3

...

1

C

C

C

C

A

v− =

0

B

B

B

B

@

V −
1

V −
2

V −
3

...

1

C

C

C

C

A

• Because the N port is linear, we expect that scattered field to be a linear function
of the incident field

v− = Sv+

• S is the scattering matrix

S =

0

B

B

B

@

S11 S12 · · ·

S21

. . .
...

1

C

C

C

A
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Relation to Voltages

• The fact that the S matrix exists can be easily proved if we recall that the voltage
and current on each transmission line termination can be written as

Vi = V +
i + V −

i Ii = Y0(I+
i − I−i )

• Inverting these equations

Vi + Z0Ii = V +
i + V −

i + V +
i − V −

i = 2V +
i

Vi − Z0Ii = V +
i + V −

i − V +
i + V −

i = 2V −
i

• Thus v+,v− are simply linear combinations of the port voltages and currents. By
the uniqueness theorem, then, v− = Sv+.
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MeasureSij
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• The term Sij can be computed directly by the following formula

Sij =
V −

i

V +
j

˛

˛

˛

˛

˛

V
+

k
=0 ∀ k 6=j

• In other words, to measure Sij , drive port j with a wave amplitude of V +
j and

terminate all other ports with the characteristic impedance of the lines (so that
V +

k
= 0 for k 6= j). Then observe the wave amplitude coming out of the port i
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S Matrix for a 1-Port Capacitor

Z0 C

• Let’s calculate the S parameter for a capacitor

S11 =
V −
1

V +
1

• This is of course just the reflection coefficient for a capacitor

S11 = ρL =
ZC − Z0

ZC + Z0
=

1
jωC

− Z0

1
jωC

+ Z0

=
1 − jωCZ0

1 + jωCZ0
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S Matrix for a 1-Port Capacitor (Direct Route)

Z0 C

• Let’s calculate the S parameter for a capacitor directly from the definition of S
parameters

S11 =
V −
1

V +
1

• Substituting for the current in a capacitor

V −
1 = V − IZ0 = V − jωCV = V (1 − jωCZ0)

V +
1 = V + IZ0 = V + jωCV = V (1 + jωCZ0)

• We arrive at the same answer as expected

=
1 − jωCZ0

1 + jωCZ0
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S Matrix for a 2-Port Shunt Element
• Consider a shunt impedance connected at the junction of two transmission lines.

The voltage at the junction is of course continuous. The currents, though, differ

V1 = V2

I1 + I2 = YLV2

Z0 Z0ZL

• To compute S11, enforce V +
2 = 0 by terminating the line. Thus we can be re-write

the above equations

V +
1 + V −

1 = V −
2

Y0(V
+
1 − V −

1 ) = Y0V −
2 + YLV −

2 = (YL + Y0)V −
2

• We can now solve the above eq. for the reflected and transmitted wave

V −
1 = V −

2 − V +
1 =

Y0

YL + Y0
(V +

1 − V −
1 ) − V +

1

V −
1 (YL + Y0 + Y0) = (Y0 − (Y0 + YL))V +

1

S11 =
V −
1

V +
1

=
Y0 − (Y0 + YL)

Y0 + (YL + Y0)
=

Z0||ZL − Z0

Z0||ZL + Z0
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Shunt Element (cont)
• The above eq. can be written by inspection since Z0||ZL is the effective load seen

at the junction of port 1.

• Thus for port 2 we can write

S22 =
Z0||ZL − Z0

Z0||ZL + Z0

• Likewise, we can solve for the transmitted wave, or the wave scattered into port 2

S21 =
V −
2

V +
1

• Since V −
2 = V +

1 + V −
1 , we have

S21 = 1 + S11 =
2Z0||ZL

Z0||ZL + Z0

• By symmetry, we can deduce S12 as

S12 =
2Z0||ZL

Z0||ZL + Z0
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Conversion Formula
• Since V + and V − are related to V and I, it’s easy to find a formula to convert for

Z or Y to S

Vi = V +
i + V −

i → v = v+ + v−

Zi0Ii = V +
i − V −

i → Z0i = v+ − v−

• Now starting with v = Zi, we have

v+ + v− = ZZ−1
0 (v+ − v−)

• Note that Z0 is the scalar port impedance

v−(I + ZZ−1
0 ) = (ZZ−1

0 − I)v+

v− = (I + ZZ−1
0 )−1(ZZ−1

0 − I)v+ = Sv+

• We now have a formula relating the Z matrix to the S matrix

S = (ZZ−1
0 + I)−1(ZZ−1

0 − I) = (Z + Z0I)−1(Z − Z0I)
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Conversion (cont)

• Recall that the reflection coefficient for a load is given by the same equation!

ρ =
Z/Z0 − 1

Z/Z0 + 1

• To solve for Z in terms of S, simply invert the relation

Z−1
0 ZS + IS = Z−1

0 Z − I

Z−1
0 Z(I − S) = S + I

Z = Z0(I + S)(I − S)−1

• As expected, these equations degenerate into the correct form for a 1 × 1 system

Z11 = Z0
1 + S11

1 − S11
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Reciprocal Networks
• We have found that the Z and Y matrix are symmetric. Now let’s see what we can

infer about the S matrix.

v+ =
1

2
(v + Z0i)

v− =
1

2
(v − Z0i)

• Substitute v = Zi in the above equations

v+ =
1

2
(Zi + Z0i) =

1

2
(Z + Z0)i

v− =
1

2
(Zi − Z0i) =

1

2
(Z − Z0)i

• Since i = i, the above eq. must result in consistent values of i. Or

2(Z + Z0)−1v+ = 2(Z − Z0)−1v−

Thus
S = (Z − Z0)(Z + Z0)−1
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Reciprocal Networks (cont)

• Consider the transpose of the S matrix

St =
`

(Z + Z0)−1
´t

(Z − Z0)t

• Recall that Z0 is a diagonal matrix

St = (Zt + Z0)
−1(Zt − Z0)

• If Zt = Z (reciprocal network), then we have

St = (Z + Z0)
−1(Z − Z0)

• Previously we found that

S = (Z + Z0)−1(Z − Z0)

• So that we see that the S matrix is also symmetric (under reciprocity)

St = S
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Another Proof

• Note that in effect we have shown that

(Z + I)−1(Z − I) = (Z − I)(Z + I)−1

• This is easy to demonstrate if we note that

Z2 − I = Z2 − I2 = (Z + I)(Z − I) = (Z − I)(Z + I)

• In general matrix multiplication does not commute, but here it does

(Z − I) = (Z + I)(Z − I)(Z + I)−1

(Z + I)−1(Z − I) = (Z − I)(Z + I)−1

• Thus we see that St = S.
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Scattering Parameters of a Lossless Network

• Consider the total power dissipated by a network (must sum to zero)

Pav =
1

2
ℜ
`

vti∗
´

= 0

• Expanding in terms of the wave amplitudes

=
1

2
ℜ
“

(v+ + v−)tZ−1
0 (v+ − v−)∗

”

• Where we assume that Z0 are real numbers and equal. The notation is about to
get ugly

=
1

2Z0
ℜ
“

v+t
v+∗ − v+t

v−
∗

+ v−
t
v+∗ − v−

t
v−

∗
”

• Notice that the middle terms sum to a purely imaginary number. Let x = v+ and
y = v−

ytx∗ − xty∗ = y1x∗
1 + y2x∗

2 + · · · − x1y∗
1 + x2y∗

2 + · · · = a − a∗

University of California, Berkeley EECS 242 – p. 22/43



Lossless (cont)

• We have shown that

Pav =
1

2Z0

0

B

@
v+t

v+
| {z }

total incident power

− v−
t
v−

∗

| {z }

total reflected power

1

C

A
= 0

• This is a rather obvious result. It simply says that the incident power is equal to the
reflected power (because the N port is lossless). Since v− = Sv+

v+t
v+ = (Sv+)t(Sv+)∗ = v+t

StS∗v+∗

• This can only be true if S is a unitary matrix

StS∗ = I

S∗ = (St)−1
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Orthogonal Properties ofS

• Expanding out the matrix product

δij =
X

k

(ST )ikS∗
kj =

X

k

SkiS
∗
kj

• For i = j we have
X

k

SkiS
∗
ki = 1

• For i 6= j we have
X

k

SkiS
∗
kj = 0

• The dot product of any column of S with the conjugate of that column is unity while
the dot product of any column with the conjugate of a different column is zero. If
the network is reciprocal, then St = S and the same applies to the rows of S.

• Note also that |Sij | ≤ 1.
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Shift in Reference Planes

• Note that if we move the reference planes, we can easily recalculate the S
parameters.

• We’ll derive a new matrix S′ related to S. Let’s call the waves at the new reference
ν

v− = Sv+

ν− = S′ν+

• Since the waves on the lossless transmission lines only experience a phase shift,
we have a phase shift of θi = βiℓi

ν−
i = v−e−jθi

ν+
i = v+ejθi
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Reference Plane (cont)

• Or we have

2

6

6

6

6

4

ejθ1 0 · · ·
0 ejθ2 · · ·
0 0 ejθ3 · · ·
...

3

7

7

7

7

5

ν− = S

2

6

6

6

6

4

e−jθ1 0 · · ·
0 e−jθ2 · · ·
0 0 e−jθ3 · · ·
...

3

7

7

7

7

5

ν+

• So we see that the new S matrix is simply

S′ =

2

6

6

6

6

4

e−jθ1 0 · · ·
0 e−jθ2 · · ·
0 0 e−jθ3 · · ·
...

3

7

7

7

7

5

S

2

6

6

6

6

4

e−jθ1 0 · · ·
0 e−jθ2 · · ·
0 0 e−jθ3 · · ·
...

3

7

7

7

7

5
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Normalized S-Parameters

a1

a2b1

b2

[S]

• Let’s introduce normalized voltage waves

a(x) =
v+(x)√

Z0
b(x) =

v−(x)√
Z0

• So now |a|2 and |b|2 represent the power of the forward and reverse wave.

• Define the scattering matrix as before

b = Sa

• For a 2 × 2 system, this is simply

"

b1

b2

#

=

"

S11 S12

S21 S22

#"

a1

a2

#
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Generalized Scattering Parameters
• We can use different impedances Z0,n at each port and so we have the

generalized incident and reflected waves

an =
v+

n
p

Z0,n

bn =
v−n

p

Z0,n

• The scattering parameters are now given by

Sij =
bi

aj

˛

˛

˛

˛

ak 6=j=0

Sij =
V −

i

V +
j

p

Z0,j
p

Z0,i

˛

˛

˛

˛

˛

V
+

k 6=j
=0

• Consider the current and voltage in terms of a and b

Vn = v+
n + v−n =

p

Z0,n(an + bn) In =
1

Z0,n

`

v−n − v−n
´

=
1

p

Z0,n

(an−bn)

• The power flowing into this port is given by

Pn =
1

2
ℜ (VnI∗n) =

1

2
ℜ
`

|an|2 − |bn|2 + (bna∗
n − b∗nan)

´

• Observe that the last term is purely imaginary so we have

Pn =
1

2

`

|an|2 − |bn|2
´
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Scattering Transfer Parameters

a1

a2

b1

b2

[T]

a3

b3

a4

b4

[T]

• Up to now we found it convenient to represent the scattered waves in terms of the
incident waves. But what if we wish to cascade two ports as shown?

• Since b2 flows into a′
1, and likewise b′1 flows into a2, would it not be convenient if

we defined the a relationship between a1,b1 and b2,a2?

• In other words we have

"

a1

b1

#

=

"

T11 T12

T21 T22

#"

b2

a2

#

• Notice carefully the order of waves (a,b) in reference to the figure above. This
allows us to cascade matrices

"

a1

b1

#

= T1

"

b2

a2

#

= T1

"

a3

b3

#

= T1T2

"

b4

a4

#

University of California, Berkeley EECS 242 – p. 29/43



Representation of Source

VS

+

Vi

−

ZS IS

Vi = Vs − IsZs

• The voltage source can be represented directly for s-parameter analysis as
follows. First note that

V +
i + V −

i = Vs +

 

V +
i

Z0
− V −

i

Z0

!

Zs

• Solve these equations for V −
i , the power flowing away from the source

V −
i = V +

i

Zs − Z0

Zs + Z0
+

Z0

Z0 + Zs

Vs

• Dividing each term by
√

Z0, we have

V −
i√
Z0

=
V +

i√
Z0

Γs +

√
Z0

Z0 + Zs

Vs
bi = aiΓs + bs

bs = Vs

p

Z0/(Z0 +Zs)
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Available Power from Source

• A useful quantity is the available power from a source under conjugate matched
conditions. Since

Pavs = |bi|2 − |ai|2

• If we let ΓL = Γ∗
S , then using ai = ΓLbi, we have

bi = bs + aiΓS = bs + Γ∗
SbiΓS

• Solving for bi we have

bi =
bs

1 − |ΓS |2

• So the Pavs is given by

Pavs = |bi|2 − |ai|2 = |bs|2
„

1 − |ΓS |2
(1 − |ΓS |2)2

«

=
|bs|2

1 − |ΓS |2
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Signal-Flow Analysis

a1

a2b1

b2

S11 S22

S12

S21

• Each signal a and b in the system is represented by a node. Branches connect
nodes with “strength” given by the scattering parameter. For example, a general
two-port is represented above.

• Using three simple rules, we can simplify signal flow graphs to the point that
detailed calculations are done by inspection. Of course we can always “do the
math” using algebra, so pick the technique that you like best.
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Series and Parallel Rules

a1 a2

SBSA

a3 a1

SBSA

a3

• Rule 1: (series rule) By inspection, we have the cascade.

a1 a2

SB

SA

a1 a2

SA + SB

• Rule 2: (parallel rule) Clear by inspection.
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Self-Loop Rule

a1 a2

SCSA

a3

SB

a1 a2

SC

a3

SA

1 − SB

• Rule 3: (self-loop rule) We can remove a “self-loop” by multiplying branches
feeding the node by 1/(1 − SB) since

a2 = SAa1 + SBa2

a2(1 − SB) = SAa1

a2 =
SA

1 − SB

a1
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Splitting Rule

a1

a2
SB

SA
a3

a4

SC

a1 a2

SB

SA

a3

a4
SC

SA

a
′

2

• We can duplicate node a2 by splitting the signals at an earlier phase
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Signal Flow Analysis Example

a1

a2b1

b2

S11 S22

S12

S21

ΓL

a1

a2b1

b2

S11

S22

S12

S21

ΓL

ΓL

• Using the above rules, we can calculate the input reflection coefficient of a
two-port terminated by ΓL = b1/a1 using a couple of steps.

• First we notice that there is a self-loop around b2.

a1

a2b1

b2

S11

S12

ΓL

S21

1 − S22ΓL

• Next we remove the self loop and from here it’s clear that the

Γin =
b1

a1
= S11 +

S21S12ΓL

1 − S22ΓL
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Mason’s Rule

a1

a2b1

b2

S11
S22

S12

S21

ΓL
ΓS

bS


P1 P2

• Using Mason’s Rule, you can calculate the transfer function for a signal flow graph
by “inspection”

T =
P1

`

1 −PL(1)(1) +
PL(2)(1) − · · ·

´

+ P2

`

1 −PL(1)(2) + · · ·
´

+ · · ·
1 −PL(1) +

PL(2) −PL(3) + · · ·

• Each Pi defines a path, a directed route from the input to the output not containing
each node more than once. The value of Pi is the product of the branch
coefficients along the path.

• For instance the path from bs to b1 (T = b1/bs) has two paths, P1 = S11 and
P2 = S21ΓLS12
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Loop of Order Summation Notation

a1

a2b1

b2

S11
S22

S12

S21

ΓL
ΓS

bS

 a1

b

2

• The notation
PL(1) is the sum over all first order loops.

• A “first order loop” is defined as product of the branch values in a loop in the graph.
For the given example we have ΓsS11, S22ΓL, and ΓsS21ΓLS12.

• A “second order loop” L(2) is the product of two non-touching first-order loops. For
instance, since loops S11Γs and S22ΓL do not touch, their product is a second
order loop.

• A “third order loop” L(3) is likewise the product of three non-touching first order
loops.

• The notation
PL(1)(p) is the sum of all first-order loops that do not touch the path

p.

• For path P1, we have
P

L(1)(1) = ΓLS22 but for path P2 we have
P

L(1)(2) = 0.
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Example: Input Reflection of Two-Port

a1

a2b1

b2

S11 S22

S12

S21

ΓL

• Using Mason’s rule, you can quickly identify the relevant paths for a Γin = b1/a1.

• There are two paths P1 = S11 and P2 = S21ΓLS12

• There is only one first-order loop:
PL(1) = S22ΓL and so naturally there are no

higher order loops.

• Note that the loop does not touch path P1, so
PL(1)(1) = S22ΓL.

• Now let’s apply Mason’s general formula

Γin =
S11(1 − S22ΓL) + S21ΓLS12

1 − S22ΓL

= S11 +
S21ΓLS12

1 − S22ΓL
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Example: Transducer Power Gain

a1

a2b1

b2

S11
S22

S12

S21

ΓL
ΓS

bS



• By definition, the transducer power gain is given by

GT =
PL

PAV S

=
|b2|2(1 − |ΓL|2)

|bs|2

1−|ΓS |2

=

˛

˛

˛

˛

b2

bS

˛

˛

˛

˛

2

(1 − |ΓL|2)(1 − |ΓS |2)

• By Mason’s Rule, there is only one path P1 = S21 from bS to b2 so we have

X

L(1) = ΓSS11 + S22ΓL + ΓSS21ΓLS12

X

L(2) = ΓSS11ΓLS22

X

L(1)(1) = 0
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Transducer Gain (cont)
• The gain expression is thus given by

b2

bS

=
S21(1 − 0)

1 − ΓSS11 − S22ΓL − ΓSS21ΓLS12 + ΓSS11ΓLS22

• The denominator is in the form of 1 − x − y + xy which allows us to write

GT =
|S21|2(1 − |ΓS |2)(1 − |ΓL|2)

|(1 − S11ΓS)(1 − S22ΓL) − S21S12ΓLΓS |2

• Recall that Γin = S11 + S21S12ΓL/(1 − S22ΓL). Factoring out 1 − S22ΓL from
the denominator we have

den =

„

1 − S11ΓS − S21S12ΓL

1 − S22ΓL

ΓS

«

(1 − S22ΓL)

den =

„

1 − ΓS

„

S11 +
S21S12ΓL

1 − S22ΓL

««

(1 − S22ΓL)

= (1 − ΓSΓin)(1 − S22ΓL)
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Transducer Gain Expression

• This simplifications allows us to write the transducer gain in the following
convenient form

GT =
1 − |ΓS |2

|1 − ΓinΓS |2
|S21|2

1 − |ΓL|2
|1 − S22ΓL|2

• Which can be viewed as a product of the action of the input match “gain", the
intrinsic two-port gain |S21|2, and the output match “gain". Since the general
two-port is not unilateral, the input match is a function of the load.

• Likewise, by symmetry we can also factor the expression to obtain

GT =
1 − |ΓS |2

|1 − S11ΓS |2
|S21|2

1 − |ΓL|2
|1 − ΓoutΓL|2
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