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Oscillator Output Spectrum

Ideal Oscillator Spectrum Real Oscillator Spectrum

The output spectrum of an oscillator is very peaked near the
oscillation frequency but not infinitely so. It’s not a pair of delta
function! Why?

If we ignore noise, the closed-loop gain of the system is infinite
since Al = 1. But in practice there is noise in any real oscillator.

A. M. Niknejad University of California, Berkeley EECS 242 p. 2/61 – p. 2/61



Phase Noise versus Amplitude Noise

SSB AM PM
(a) (c) (d)

DSB
(b)

Upper and Lower Sidebands Shown Separately

Sum of Upper and Lower Sidebands

Source: The Designer’s Guide Community (www.desingers-guide.org), Noise in Mixers,

Oscillators, Samplers, and Logic by J. Philips and K. Kundert

Notice that noise at offset frequency ∆ω can be modeled as a
phasor rotating around the rotating carrier phasor. It rotates
because it’s at a different frequency (offset).

The upper side-band rotates in the same direction with
frequency ∆ω whereas the lower sideband rotates clockwise or
with frequency −∆ω.
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Graphical Picture of AM and PM

In general the two side-bands are completely uncorrelated,
meaning their amplitude and phase will vary randomly from one
another. When summed together they trace an ellipse whose
size and shape and orientation shifts randomly.

If the noise is cyclostationary, there is correlation between the
two sidebands, which reduces the random shifting of the shape
and orienation. For perfect correlation, the shape and orienation
will remain unchanged, and the size shifts randomly.

Note that for a stationary noise source, the AM and PM
components are equal.

If we pass the signal through a limiting amplifier, the AM noise is
rejected. This produces an output with only PM.

We shall see that for an oscillator, the AM noise is rejected.

Oscillators generate phase noise (AM component rejected),
which traces a perpundicular line.
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Phase Noise?

Why do we say that the noise in the spectrum is due to “phase”
noise rather than amplitude noise?

An oscillator has a well defined amplitude which is controlled by
the non-linearity of the circuit. If there is an amplitude
perturbation, it is naturally rejected by the oscillator.

This occurs because the oscillation occurs at a frequency when
the loop gain is unity. If the amplitude grows, due to
compressive characteristics of the non-linearity, the loop gain
decreases and the oscillation amplitude dampens. Likewise, if
the amplitude drops, the loop gain goes over unity due to
expansive characterisitcs of the non-linearity, and the amplitude
grows back.

The phase of the oscillator, on the other hand, is “free running”.
Any phase-shifted solution to the oscillator is a valid solution.
So if a perturbation changes the phase of the oscillator, there is
no “restoring force” and the phase error persists.
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Phase Noise Measurement

If we zoom into the carrier
on a log scale, the rela-
tive power at an offset fre-
quency ∆f from the carrier
drops very rapidly. For the
case shown above, at an
offset of 100kHz, the power
drops to −100dBc.

1kHz 10kHz 100kHz 1MHz

1/f2

1/f3

∆f

log
P

P0

(dBc/Hz)

−100

−80

There is clearly a region where the slope is 20dB/dec. But this
range only holds until the noise flattens out. Also, very near the
carrier, the slope increases to approximately 30dB/dec.
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Phase Noise In TX Chain

VCO

PA

CH 1 CH 6CH 5CH 4CH 3CH 2

Channel Spacing 200 kHz

Phase Noise 

Leakage

Phase noise in a transmit chain will “leak” power into adjacent
channels. Since the power transmitted is large, say about
30dBm, an adjacent channel in a narrowband system may only
reside about 200kHz away (GSM), placing a stringent
specification on the transmitter spectrum.
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Phase Noise In RX Chain

IF LO RF1 RF2

Interferer

Desired

In a receive chain, the fact that the LO is not a perfect delta
function means that there is a continuum of LO’s that can mix
with interfering signals and produce energy at the same IF. Here
we observe an adjacent channel signal mixing with the “skirt” of
the LO and falling on top of the a weak IF signal from the
desired channel.
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Phase Noise In Digital Communication

In a digital communication system,
phase noise can lead to a lower
noise margin. Above, we see that
the phase noise causes the constel-
lation of a 4 PSK system to spread
out.

I

Q

In OFDM systems, a wide bandwidth is split into sub-channels.
The phase noise leads to inter carrier interference and a
degradation in the digital communication BER.
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Feedback Model of Phase Noise

In a simple linear model for an oscillator, the closed-loop
transfer function is given by

Y (f)

X(f)
=

H(f)

H(f) − 1

This goes to infinity at oscillator since by definition |H(f)| = 1 for
osicllation to occur (Barkhausen condition)

At a frequency offset from the carrier, assuming the loop gain
varies smoothly, we have

H(f) = H(f0) +
dH

df
∆f

so that
Y (f + ∆f)

X(f + ∆f)
=

H(f0) + dH
df ∆f

H(f0) + dH
df ∆f − 1
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Feedback Model (cont)

Since H(f0) = 1 and assuming dH/df∆f ≪ 1 for practical
situations (near the carrier)

Y (f + ∆f)

X(f + ∆f)
=

1
dH
df ∆f

This shows that for circuits containing white noise sources, the
noise voltage (current) is inversely proportional to ∆f , while the
noise power spectral density is proportional to ∆f2

This simplistic picture already gives us some insight into the
shape of the noise spectrum. But the noise does not “blow up”
near the carrier. Also, why does all the noise go to phase noise
and not amplitude noise? Clearly an LTI model is too simple.
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Limit Cycle Model of Phase Noise

The figure above shows that the non-linearity in the oscillator
tends to reject AM noise.

The noise is very small, so why is a linear model not valid?

There are two reasons for this. First, the transfer function that
the noise sees is a periodically time-varyng function (similar to a
mixer).

Second, we must be careful and correctly model the noise
transfer characteristics from the source of noise (say thermal or
flicker noise) top the phase of the oscillator (not amplitude),
which is a non-linear process.
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Linearized Phase Model

The voltage perturbation to
noise can be written as

∆v(t) = (1+α(t))v(t+
φ(t)

2πf0
)−v(t)

v1

v2

t1
t1

t2

t2
t3

t3 t4

t4

t5

t5

t6

t6

!#6

t0

t0 !v(0)

The voltage v(t) is the unperturbed oscillator voltage and α is
the amplitude noise, and φ is the phase noise.

The oscillator is able to reject the amplitude noise (α(t) → 0 as
t → ∞.

On the other hand, a perturbation causes a permanent shift in
the oscillator phase φ(t) → ∆φ as t → ∞.
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Phase Noise Power Spectral Density
This can be modeled as a step function impulse repsonse for a
disturbance n(t)

φ(t) =

∫
∞

−∞

u(t − τ)n(τ)dτ =

∫ t

−∞

n(τ)dτ

or the power spectral density of the noise is

Sφ(∆f) =
Sn(∆f)

(2π∆f)2

If we linearize the equation for v(t) for observation times that
are short, then

∆v =
dv

dt

∆φ(t)

2πf0

This says simply that phase perturbations that are tangential to
the oscillator “limit cycle” cuase a deviation. A complete
understanding of this requires Floquet theory to obtain the
correct “tangential” and “perpundicular” directions.
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Phase Noise versus Voltage Noise

Sφ(ω)

∆ω

SV(ω)

ω0

While the phase noise is unbounded, the output voltage is
bounded. This is because the sinusoid is a bounded function
and so the output voltage spectrum flattens around the carrier.
In fact, if we assume that the phase is a Brownian noise
process, the spectrum is computed to be a Lorentzian.
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Oscillator Ideal Model

Consider a simple LCR tank and a noiseless “energy restorer”
circuit in parallel which sustains the oscillation.

The energy stored in the tank is given by the peak voltage
across the capacitor

Estored =
1

2
CV 2

pk = Cv2
rms
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Resonator Noise Power

The total mean-square noise voltage is found by integrating the
resistor’s thermal noise density over the noise bandwidth of the
RLC resonator

v2
n = 4kTR

∫
∞

0

∣
∣
∣
∣

|Z(f)|
R

∣
∣
∣
∣

2

df = 4kTR · 1

4RC
=

kT

C

The noise-to-signal ratio is therefore given by

N

S
= R

v2
n

v2
rms

=
kT

Estored

By definition, the quality factor of the tank is given by

Q =
ωEstored

Pdiss
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Phase Noise of Oscillator

We can now write the noise-to-signal power as

N

S
=

ωkT

QPdiss

Even from this simple relation, we see that increasing the Q
directly benefits the SNR.

This applies to an ideal oscillator where the only source of noise
is the tank and the tank losses are compensated by a noiseless
generator (which does not load the circuit).
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Phase Noise of “Real” Oscillator

In a real oscillator, even if the energy restoring element is
noiseless, it still presents negative resistance to the circuit
which must be taken into account. At a small offset from
resonance, the impedance of the LC tank is given by

Z(ω0 + ∆ω) ≈ j · ω0L

2∆ω
ω0

Substituting that Q = 1/(Gω0L)

|Z(ω0 + ∆ω)| =
1

G
· ω0

2Q∆ω

v2
n

∆f
=

i2n
∆f

· |Z|2 = 4kTR

(
ω0

2Q∆ω

)2
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Phase Noise Expression

L(∆ω) = 10 log

[

2kT

Psig
·
(

ω0

2Q∆ω

)2
]

Notice that only half of the noise is attributed to phase noise.
This is due to a non-rigorous argument that the noise partitions
to FM and AM noise and therefore only half of the noise
contributes to the phase noise.

The right hand side shows that the phase noise drops like 1/f2,
an experimentally observed fact in a region of the spectrum. It’s
also clear that the Q factor is the key factor in determining the
phase noise level.
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Leeson’s Phase Noise Model

Leeson modified the above noise model to account for several
experimentally observed phenomena, including a 1/f3 region
and a flat region in the phase noise as shown above.

L(∆ω) = 10 log

[

2FkT

Psig
·
(

1 +

(
ω0

2Q∆ω

)2
)(

1 +
∆ω1/f3

|∆ω|

)]
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Leeson’s Model Discussion

In Leeson’s model, the factor F is a fitting parameter rather than
arising from any physical concepts. It’s tempting to call this the
oscillator “noise figure”, but this is misleading.

Leeson also assumed that the 1/f3 and 1/f2 corner occurred
precisely at the 1/f corner of the device. In measurements, this
is not always the case.

Although this equation is very intuitive and simple to use, it’s
difficult to gain insight beyond increase Psig and increase Q!
This equation is the foundation for the oscillator FOM:

FOM = L(fm) − 20 log

[
f0

fm

]

+ 10 log(Pdiss)
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LTI Analysis of Oscillator

n : 1

+
v1

−

v2
n

i = gm(vn + v1)

C L R

v2

Consider a simple LTI analysis of the oscillator with a noise
voltage vn. An active device is assumed to pump energy into
the tank through positive feedback. We have

v2 = gm(v1 + vn)ZT = gm

(v2

n
+ vn

)

ZT

v2

(

1 − gmZT

n

)

= gmZT vn
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Noise Analysis

Continuing to simplify the above results

v2 =
gmZT vn

1 − gmZT

n

=
gmRvn

R
ZT

− gmR
n

or

v2 = vn
gmR

1 − gmR
n + jBR

The reactive term B can be simplified at a small offset δω from
the resonance ω0

B =
1

j(ω0 + δω)L
+ j(ω0 + δω)C
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Simplification Near Resonance

Now comes the approximation

B ≈ 1

jω0L

(

1 − δω

ω0

)

+ j(ω0 + δω)C

= jδωC − δω/ω0

jω0L
= 2jδωC

where ω0
2 = 1/(LC). Using the notation Aℓ = gmR/n

v2 = vn
nAℓ

(1 − Aℓ) + j2δωRC

v2
2,rms = v2

n

n2Aℓ
2

(1 − Aℓ)2 + 4δω2R2C2
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Oscillator Power

If we now observe that the total power of the oscillator is fixed
we have

P =
v2
2,rms

R
=

1

R
v2

n

∫
∞

−∞

n2Aℓ
2

(1 − Aℓ)2 + 4δω2R2C2
d(δω)

This integral is closed since it’s in the known form

∫
∞

−∞

dx

1 + a2x2
=

π

a

P =
v2

n

R

Aℓ
2

(1 − Aℓ)2
π(1 − Aℓ)n

2

2RC
=

v2
nn2

R

π

2

1

RC

Aℓ
2

(1 − Aℓ)

Since P = Posc, we can solve for Aℓ.
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Non-unity Loop Gain

Since Posc is finite, Aℓ 6= 1 but it’s really close to unity

Posc(1 − Aℓ) =
v2

nn2

R

π

2

1

RC
Aℓ

2

Since Aℓ ≈ 1

(1 − Aℓ) =
v2

n

R

Posc

π

2

1

RC
︸ ︷︷ ︸

∆fRC

Since we integrated over negative frequencies, the noise
voltage is given by

v2
n = 2kTReff
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Magnitude ofAℓ

But since v2
n/R over the equivalent bandwidth ∆fRC is much

small than Posc, we expect that

(1 − Aℓ) =
v2

n

R

Posc
∆fRC = ǫ

or
Aℓ = 1 − ǫ

The LTI interpretation is that the amplifier has positive feedback
and it limits on it’s own noise. The loop gain is nearly unity but
just below so it’s “stable”.

A. M. Niknejad University of California, Berkeley EECS 242 p. 28/61 – p. 28/61



Standard Oscillator LTI Analysis

CL R

v2
2

i2
2 i2

1

i2R

Zi

gmv1
+
v1

−

The above equivalent circuit includes the “drain” noise i21, the

load noise i2R, and an input voltage/current noise v2
2 and i22.
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Equivalent Noise Model

CL

i2
n

gmv1+
v1

−

Reff

All the noise sources can be moved to the output by an
appropriate transformation

i2n = i21 +
i22
n2

+ v2
n

(

gm − 1

Zi

)2

+ i2R
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LTI Noise Analysis

The output voltage is given by

vo = −(gmv1 + in)ZT

since

v1 =
−vo

n

we have

v1 =
gmZT

n
vo − inZT

vo =
−inZT

1 − gmZT

n
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Tank Near Resonance

The tank impedance can be put into this form

ZT =
1

1
R1

+ jωC + 1
jωL

=
R1

1 + j ω
ω0

Q + 1
jω ω0Q

Where the loaded tank Q = R1/(ω0L) = ω0R1C

ZT =
R1

1 + jQ
(

ω
ω0

− ω0
ω

)

If ω = ω0 + δω and δω ≪ ω0

ω

ω0
− ω0

ω
≈ 2δω

ω0
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Transfer Near Resonance

We now have that

ZT (ω0 + δω) ≈ R1

1 + j2Qδω
ω0

This allows to write the output voltage as

vo = −in
ZT

1 − gmR1

n
1

1+j2Qδω
ω0

= −in
R1

(

1 − gmR1

n

)

+ j2Qδω
ω0

Now it’s time to observe that Aℓ = gmR1

n is the initial loop gain. If
we assume that Aℓ ≤ 1, then the circuit is a high gain positive
feedback amplifier.
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Lorentzian Spectrum

The power spectrum of vo is given by

v2
o = i2n

R2
1

(

1 − gmR1

n

)2

+ 4Q2 δω2

ω0
2

This has a Lorentzian shape for white noise. For offsets
frequencies of interest

4Q2 δω2

ω0
2
≫
(

1 − gmR1

n

)2

Thus a characteristic δω2 roll-off with offset.

A. M. Niknejad University of California, Berkeley EECS 242 p. 34/61 – p. 34/61



Noise at Offsets

The spectrum normalized to the peak is given by

(
vo

Vo

)2

≈ i2nR2
1

V 2
o

(ω0

δω

)2 1

4Q2

The above equation is in the form of Leeson’s Equation. It
compactly expresses that the oscillator noise is expressed as
noise power over signal power (N/S), divided by Q2 and
dropping like 1/δω2.
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Total Noise Power

We can express the total noise power similar to before

V 2
o =

∫
∞

−∞

v2
od(δω)

=
i2nR2

1

(1 − Aℓ)2

∫
∞

−∞

d(δω)

1 + 4Q2
(

δω
ω0

)2
1

(1−Aℓ)
2

V 2
o =

i2nR2
1

(1 − Aℓ)

π

2

fo

Q
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Lorentzian Bandwidth

We again interpret the amplitude of oscillation as the the noise
power i2nR2

1 gained up by the positive feedback

(1 − Aℓ) =
i2nR2

1

V 2
o

πfo

2Q

The 3 dB bandwidth of the Lorentzian is found by

(1 − Aℓ) = 2Q
f − fo

fo
=

2Q∆f

fo

∆f =
fo

2Q
(1 − Aℓ) =

i2nR2
1

V 2
o

π

4Q2
fo
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Example Bandwidth

For example, take i2n = 10−22A2/Hz, fo = 1GHz, R1 = 300Ω,
Q = 10 and Vo = 1V. This gives a ∆f = 0.07Hz.

This is an extremely low bandwidth. This is why on the
spectrum analyzer we don’t see the peak of the waveform. For
even modest offsets of 100 − 1000Hz, the 1/δω2 behavior
dominates. But we do observe a 1/δω3 region.
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Noise Corner Frequency

Because the oscillator is really a time-varying system, we
should consider the effects of noise folding. For instance,
consider any low frequency noise in the system. Due to the
pumping action of the oscillator, it will up-convert to the carrier
frequency.

In reality the pumping is not perfectly periodic due to the noise.
But we assume that the process is cyclostationary to simplify
the analysis.

Since there is always 1/f noise in the system, we now see the
origin of the 1/f3 region in the spectrum.
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Noise due to Non-Linear Caps

Another noise upconversion occurs through non-linear
capacitors. This is particularly important on the VCO control
line.

Assume that Cj = C0 + KC∆Vc. Since the frequency is given by

fo =
1

2π
√

LC

We see that fo = foQ + Kf∆Vc. Kf ≈ 10 − 100MHz/V. The
oscillation waveform is given by

V (t) = Vo cos

(∫

2πfodt

)
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Noise Sidebands

For ∆Vc a tone at some offset frequency ωm, we have

∆Vc = Vm cos ωmt

where Vm =
√

4kTRc

√
2V/

√
Hz due to noise. This produces

noise sidebands

V (t) = Vo cos

(

ω0t +
√

2
√

4kTRc
Kf2π

ωm
sinωmt

)

For small noise

V (t) ≈ Vo cos(ω0t) − Vo sin(ω0t)
√

8kTRc
Kf

ωm
sin(ωmt)

V (t) ≈ Vo

ωm
Kf

√

8kTRc
1

2
cos(ωo ± ωm)
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LTV Phase Noise Model

The noise analysis thus far makes some very bad assumptions.
Most importantly, we neglect the time-varying nature of the
process. Every oscillator is a quasi-periodic system and the
noise analysis should take this into account.

The following noise model is due to Hajimiri/Lee. It begins with
a simple thought experiment.

Imagine injecting a current impulse into an LC tank at different
times. We assume the LC tank is oscillating at the natural
frequency.
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Injection at Peak Amplitude

+
Vmax

−

Since the impulse of current “sees” an open circuit across the
inductor but a short circuit across the capacitor, all the current
will flow into the capacitor, dumping a charge δq onto the
capacitor plates.

Note that if the injection occurs at the peak voltage amplitude, it
will change the amplitude of oscillation.

The phase of oscillation, though, is unaltered.
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Injection at Zero-Crossing

+

−

Imax0V

If the injection occurs at the waveform crossing, though, the
change in amplitude also changes the phase of the oscillator.

So we see the sensitivity of the oscillator to noise injection is a
periodic function of time. There are points of zero sensitivity and
points of peak sensitivity.
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ISF Model

The key observation (experimentally confirmed) is that the
phase change is a linear function of the disturbance injection
(for small injections). Therefore we write the impulse response
in the following normalized form

hφ(t, τ) =
Γ(ω0τ)

qmax
u(t − τ)

The constant qmax = CVpeak is simply a normalization constant,
the peak charge in the oscillator. The response is zero until the
system experiences the input (causality), but then it is assumed
to occur instantaneously, leading the the step function
response. The function Γ(ω0τ), the Impulse Sensitivity Function
(ISF), is a periodic function of time, capturing the time varying
periodic nature of the system.
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Example Waveforms

V (t)

Γ(t)

t

t

This ISF can be
estimated analyti-
cally or calculated
from simulation

Note a hypothetical system with output voltage waveform and
ISF. As expected, the ISF peaks during “zero” crossings and is
nearly zero at the peak of the waveform.
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General Response

For any deterministic input, we have the convolution integral

φ(t) =

∫
∞

−∞

hφ(t, τ)i(τ)dτ

=
1

qmax

∫ t

−∞

Γ(ω0τ)i(τ)dτ

Since the ISF function Γ is periodic

Γ(ω0τ) =
c0

2
+

∞∑

n=1

cn cos(nω0t + φn)

φ(t) =
1

qmax

(

c0

2

∫ t

−∞

i(τ)dτ +

∞∑

n=1

cn

∫ t

−∞

cos(nω0t)i(τ)dτ

)
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Phase Deviation to Output

∫ t

−∞

Γ(ω0t)

i(t)

qmax

φ(t)
0cos(ω t + φ(t)) V (t)

Graphically, we see that a noise disturbance creates a phase
disturbance as shown above, and this in turn modulates the
phase of the carrier. This last step is a non-linear process.

The phase function φ(t) appears in an oscillator as a phase
modulation of the carrier. Note that the phase itself is not
(easily) observed directly.
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Noise Sidebands

The noise sidebands due to current noise at an offset ∆ω from
the m’th harmonic (including DC) is now calculated.

i(t) = Im cos(mω0 + ∆ω)t

= Im(cos mω0t cos ∆ωt − sinmω0t sin∆ωt)

If we insert this into the above integration, for small offsets
∆ω ≪ ω0, we find (approximately) that all terms are orthogonal
and integrate to zero except when n = m.

The non-zero term integrates to give

φ(t) ≈ 1

2
cm

Im sin ∆ωt

qmax∆ω
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Graphical Interpretation

ω0 2ω0 3ω0∆ω

1/f

i2n/∆ω

Sφ(ω)

∆ω

c1 c2 c3c0 c1 c2 c3

We see that all noise a distance ∆ω around all the harmonics,
including DC, contributes to the phase noise. DC 1/f noise
contributes to the 1/f3 region.
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White Noise Expression

We see that the noise power at offset ∆ω is given by

PSBC(∆ω) ≈ 10 · log

(
Imcm

2qmax∆ω

)2

If the noise is white, then we get equal contribution from all
sidebands

PSBC(∆ω) ≈ 10 · log

(

i2n
∑

∞

m=0 c2
m

4q2
max∆ω2

)
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Final Expression

Parseval taught us that

∞∑

m=0

c2
m =

1

π

∫ 2π

0

|Γ(x)|2dx = 2Γ2
rms

This allows us to write the phase noise in the following form

PSBC(∆ω) ≈ 10 · log

(

i2nΓ2
rms

2q2
max∆ω2

)

Thus to minimize the phase noise we must minimize the RMS
value of the ISF.
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Cyclostationary Noise

If we assume that the noise sources of the active devices can be
modeled as a stationary noise multiplied by a periodic function

in(t) = in0(t) · α(ω0t)

We can absorb this into the ISF and all the previous results
follow unaltered as long as we use Γeff .

Γeff (x) = Γ(x) · α(x)
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1/f Noise Upconversion

It’s interesting to note that the 1/f noise up-conversion process
occurs through c0. This is related to the “DC” value of the noise
sensitivity function.

The 1/f3 corner is given by

∆1/f3 = ω1/f · c2
0

4Γ2
rms

= ω1/f ·
(

Γdc

Γrms

)2

So in theory a “balanced” oscillator can achieve much better
phase noise performance.
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Amplitude Noise

In a like manner, the response of an oscillator to noise to the
output amplitude (rather than phase) can be described by a LTV
model

hA(t, τ) =
Λ(ω0t)

qmax
d(t − τ)

where d(t − τ) is a function that defines how the excess
amplitude decays. Since there is an amplitude restoration
mechanism in place, this perturbation decays to zero. Assume
this process is described by a damped exponential decay

d(t − τ) = e−ω0(t−τ)/Q · u(t − τ)
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Amplitude Response

The excess amplitude response to an arbitrary input current i(t)
is simply the convolution integral

A(t) =

∫ t

−∞

i(τ)

qmax
Λ(ω0τ)e−ω0(t−τ)/Qdτ

If the current i(t) is a white noise source, then the output
spectrum is given by

Lamplitude(∆ω) =
Λ2

rms

q2
max

· i2n/∆f

2 ·
(

ω2

0

Q2 + ∆ω2
)

The total noise is a sum of phase and amplitude noise. In
general for close in noise, the phase term dominates.

A. M. Niknejad University of California, Berkeley EECS 242 p. 56/61 – p. 56/61



Jitter
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1 Jitter is the undesired
fluctionations in the tim-
ing of a signal. Jit-
ter arises due to phase
noise. In other words,
it is a time-domain per-
spective of the same
general phenomena.

Another way to see jitter is to observe the zero-crossing time of
a periodic signal. Due to jitter, the zero-crossing time will vary
slightly from the ideal location since the signal is not strictly
periodic due to noise.

Jitter is often specified by its peak-to-peak value or the RMS
value. Note that for a Gaussian distribution of zero-crossings,
the peak-to-peak value actually is unbounded so the RMS value
is a more useful measure.
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Jitter Computation
Let vj(t) = v(t + j(t)) be a waveform in the time which has jitter.
Note that j = φ/(2πf0), which shows that the jitter arises from
phase noise.

For example, a noisy voltage can create jitter as follows

vn(t) = v(t) + n(t) = v(t + j(t)) = v(t) +
dv(t)

dt
j(t) + · · ·

which means that

n(t) ≈ dv(t)

dt
j(t)

This allows us to relate the variance of the jitter in terms of the
noise.

var(j(tc)) ≈
var(n(tc))
(

dv(tc)
dt

)2

where tc is the expected time of the threshold crossing.
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Jitter Measurement

Oscilliscope

ch1 Trig

Delay

Splitter

DUT

(Clock Source)

The above setup shows how to measure jitter on an
oscilliscope.

Most modern scopes have built-in functions for generating an
eye-diagram, which can be used to estimate the statistics of the
jitter.
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Jitter Relation to Phase Noise

Since jitter and phase noise are really two different ways of
seeing the same thing, it’s not surprising that you can calculate
the jitter from the phase noise (but not the other way around).

The variance of jitter can be computed from

σj =< φ(t)2 >=

∫ +∞

−∞

Sφ(f)df

Often the RMS jitter is quoted, which is just the square root of
the above quantity. Furthermore, the jitter is normalized to the
carrier freqeuncy.

JPER =
φ(t)

2πf0

so that

JPER,RMS =

√

< φ(t)2 >

2πf0
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