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Input/Output Admittance

• The input and output impedance of a two-port will play an important role in our
discussions. The stability and power gain of the two-port is determined by these
quantities.

• In terms of y-parameters

Yin =
I1

V1
=

Y11V1 + Y12V2

V1
= Y11 + Y12

V2

V1

• The voltage gain of the two-port is given by solving the following equations

−I2 = V2YL = −(Y21V1 + V2Y22)

V2

V1
=

−Y21

YL + Y22

• Note that for a simple transistor Y21 = gm and so the above reduces to the familiar
gmRo||RL.

University of California, Berkeley EECS 242 – p. 2/33



Input/Output Admittance (cont)
• We can now solve for the input and output admittance

Yin = Y11 − Y12Y21

YL + Y22

Yout = Y22 − Y12Y21

YS + Y11

• Note that if Y12 = 0, then the input and output impedance are de-coupled

Yin = Y11

Yout = Y22

• But in general they are coupled and changing the load will change the input
admittance.

• It’s interesting to note the same formula derived above also works for the
input/output impedance

Zin = Z11 − Z12Z21

ZL + Z22

• The same is true for the hybrid and inverse hybrid matrices.
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Power Gain

+

vs

−

YS

YL

[

y11 y12

y21 y22

]

Pin PL

Pav,S Pav,L

• We can define power gain in many different ways. The power gain Gp is defined
as follows

Gp =
PL

Pin

= f(YL, Yij) 6= f(YS)

• We note that this power gain is a function of the load admittance YL and the
two-port parameters Yij .

• The available power gain is defined as follows

Ga =
Pav,L

Pav,S

= f(YS , Yij) 6= f(YL)

• The available power from the two-port is denoted Pav,L whereas the power
available from the source is Pav,S .
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Power Gain (cont)

+

vs

−

YS

YL

[

y11 y12

y21 y22

]

Pin PL

Pav,S Pav,L

• Finally, the transducer gain is defined by

GT =
PL

Pav,S

= f(YL, YS , Yij)

• This is a measure of the efficacy of the two-port as it compares the power at the
load to a simple conjugate match.
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Derivation of Power Gain

• The power gain is readily calculated from the input admittance and voltage gain

Pin =
|V1|2

2
ℜ(Yin)

PL =
|V2|2

2
ℜ(YL)

Gp =

˛

˛

˛

˛

V2

V1

˛

˛

˛

˛

2 ℜ(YL)

ℜ(Yin)

Gp =
|Y21|2

|YL + Y22|2
ℜ(YL)

ℜ(Yin)
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Derivation of Available Gain

YSIS

[

Y11 Y12

Y21 Y22

]

YeqIeq

• To derive the available power gain, consider a Norton equivalent for the two-port
where

Ieq = I2 = Y21V1 =
Y21

Y11 + YS

IS

• The Norton equivalent admittance is simply the output admittance of the two-port

Yeq = Y22 − Y21Y12

Y11 + YS

• The available power at the source and load are given by

Pav,S =
|IS |2

8ℜ(YS)
Pav,L =

|Ieq|2
8ℜ(Yeq)

Ga =
|Y21|2

|Y11 + YS |2
ℜ(YS)

ℜ(Yeq)
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Transducer Gain Derivation

• The transducer gain is given by

GT =
PL

Pav,S

=
1
2
ℜ(YL)|V2|2

|IS |2

8ℜ(YS)

= 4ℜ(YL)ℜ(YS)

˛

˛

˛

˛

V2

IS

˛

˛

˛

˛

2

• We need to find the output voltage in terms of the source current. Using the
voltage gain we have and input admittance we have

˛

˛

˛

˛

V2

V1

˛

˛

˛

˛

=

˛

˛

˛

˛

Y21

YL + Y22

˛

˛

˛

˛

IS = V (YS + Yin)

˛

˛

˛

˛

V2

IS

˛

˛

˛

˛

=

˛

˛

˛

˛

Y21

YL + Y22

˛

˛

˛

˛

1

|YS + Yin|

|YS + Yin| =

˛

˛

˛

˛

YS + Y11 − Y12Y21

YL + Y22

˛

˛

˛

˛
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Transducer Gain (cont)

• We can now express the output voltage as a function of source current as

˛

˛

˛

˛

V2

IS

˛

˛

˛

˛

2

=
|Y21|2

|(YS + Y11)(YL + Y22) − Y12Y21|2

• And thus the transducer gain

GT =
4ℜ(YL)ℜ(YS)|Y21|2

|(YS + Y11)(YL + Y22) − Y12Y21|2

• It’s interesting to note that all of the gain expression we have derived are in the
exact same form for the impedance, hybrid, and inverse hybrid matrices.
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Comparison of Power Gains

• In general, PL ≤ Pav,L, with equality for a matched load. Thus we can say that

GT ≤ Ga

• The maximum transducer gain as a function of the load impedance thus occurs
when the load is conjugately matched to the two-port output impedance

GT,max,L =
PL(YL = Y ∗

out)

Pav,S

= Ga

• Likewise, since Pin ≤ Pav,S , again with equality when the the two-port is
conjugately matched to the source, we have

GT ≤ Gp

• The transducer gain is maximized with respect to the source when

GT,max,S = GT (Yin = Y ∗
S ) = Gp
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Bi-Conjugate Match

• When the input and output are simultaneously conjugately matched, or a
bi-conjugate match has been established, we find that the transducer gain is
maximized with respect to the source and load impedance

GT,max = Gp,max = Ga,max

• This is thus the recipe for calculating the optimal source and load impedance in to
maximize gain

Yin = Y11 − Y12Y21

YL + Y22
= Y ∗

S

Yout = Y22 − Y12Y21

YS + Y11
= Y ∗

L

• Solution of the above four equations (real/imag) results in the optimal YS,opt and
YL,opt.
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Calculation of Optimal Source/Load

• Another approach is to simply equate the partial derivatives of GT with respect to
the source/load admittance to find the maximum point

∂GT

∂GS

= 0

∂GT

∂BS

= 0

∂GT

∂GL

= 0

∂GT

∂BL

= 0

• Again we have four equations. But we should be smarter about this and recall that
the maximum gains are all equal. Since Ga and Gp are only a function of the
source or load, we can get away with only solving two equations. For instance

∂Ga

∂GS

= 0
∂Ga

∂BS

= 0

• This yields YS,opt and by setting YL = Y ∗
out we can find the YL,opt.

• Likewise we can also solve

∂Gp

∂GL

= 0
∂Gp

∂BL

= 0

• And now use YS,opt = Y ∗
in.
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Optimal Power Gain Derivation

• Let’s outline the procedure for the optimal power gain. We’ll use the power gain Gp

and take partials with respect to the load. Let

Yjk = mjk + jnjk

YL = GL + jXL

Y12Y21 = P + jQ = Lejφ

Gp =
|Y21|2

D
GL

ℜ
„

Y11 − Y12Y21

YL + Y22

«

= m11 − ℜ(Y12Y21(YL + Y22)∗)

|YL + Y22|2

D = m11|YL + Y22|2 − P (GL + m22) − Q(BL + n22)

∂Gp

∂BL

= 0 = −|Y21|2GL

D2

∂D

∂BL
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Optimal Load (cont)

• Solving the above equation we arrive at the following solution

BL,opt =
Q

2m11
− n22

• In a similar fashion, solving for the optimal load conductance

GL,opt =
1

2m11

q

(2m11m22 − P )2 − L2

• If we substitute these values into the equation for Gp (lot’s of algebra ...), we arrive
at

Gp,max =
|Y21|2

2m11m22 − P +
p

(2m11m22 − P )2 − L2

University of California, Berkeley EECS 242 – p. 14/33



Final Solution

• Notice that for the solution to exists, GL must be a real number. In other words

(2m11m22 − P )2 > L2

(2m11m22 − P ) > L

K =
2m11m22 − P

L
> 1

• This factor K plays an important role as we shall show that it also corresponds to
an unconditionally stable two-port. We can recast all of the work up to here in
terms of K

YS,opt =
Y12Y21 + |Y12Y21|(K +

√
K2 − 1)

2ℜ(Y22)

YL,opt =
Y12Y21 + |Y12Y21|(K +

√
K2 − 1)

2ℜ(Y11)

Gp,max = GT,max = Ga,max =
Y21

Y12

1

K +
√

K2 − 1
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Maximum Gain

• The maximum gain is usually written in the following insightful form

Gmax =
Y21

Y12
(K −

p

K2 − 1)

• For a reciprocal network, such as a passive element, Y12 = Y21 and thus the
maximum gain is given by the second factor

Gr,max = K −
p

K2 − 1

• Since K > 1, |Gr,max| < 1. The reciprocal gain factor is known as the efficiency
of the reciprocal network.

• The first factor, on the other hand, is a measure of the non-reciprocity.
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Unilateral Maximum Gain

• For a unilateral network, the design for maximum gain is trivial. For a bi-conjugate
match

YS = Y ∗
11

YL = Y ∗
22

GT,max =
|Y21|2

4m11m22
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Stability of a Two-Port

• A two-port is unstable if the admittance of either port has a negative conductance
for a passive termination on the second port. Under such a condtion, the two-port
can oscillate.

• Consider the input admittance

Yin = Gin + jBin = Y11 − Y12Y21

Y22 + YL

• Using the following definitions

Y11 = g11 + jb11

Y22 = g22 + jb22

Y12Y21 = P + jQ = L∠φ

YL = GL + jBL

• Now substitute real/imag parts of the above quantities into Yin

Yin = g11 + jb11 − P + jQ

g22 + jb22 + GL + jBL

= g11 + jb11 − (P + jQ)(g22 + GL − j(b22 + BL))

(g22 + GL)2 + (b22 + BL)2

University of California, Berkeley EECS 242 – p. 18/33



Input Conductance

• Taking the real part, we have the input conductance

ℜ(Yin) = Gin = g11 − P (g22 + GL) + Q(b22 + BL)

(g22 + GL)2 + (b22 + BL)2

=
(g22 + GL)2 + (b22 + BL)2 − P

g11

(g22 + GL) − Q
g11

(b22 + BL)

D

• Since D > 0 if g11 > 0, we can focus on the numerator. Note that g11 > 0 is a
requirement since otherwise oscillations would occur for a short circuit at port 2.

• The numerator can be factored into several positive terms

N = (g22 + GL)2 + (b22 + BL)2 − P

g11
(g22 + GL) − Q

g11
(b22 + BL)

=

„

GL +

„

g22 − P

2g11

««2

+

„

BL +

„

b22 − Q

2g11

««2

− P 2 + Q2

4g2
11
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Input Conductance (cont)

• Now note that the numerator can go negative only if the first two terms are smaller
than the last term. To minimize the first two terms, choose GL = 0 and

BL = −
“

b22 − Q
2g11

”

(reactive load)

Nmin =

„

g22 − P

2g11

«2

− P 2 + Q2

4g2
11

• And thus the above must remain positive, Nmin > 0, so

„

g22 +
P

2g11

«2

− P 2 + Q2

4g2
11

> 0

g11g22 >
P + L

2
=

L

2
(1 + cos φ)
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Linvill/Llewellyn Stability Factors
• Using the above equation, we define the Linvill stability factor

L < 2g11g22 − P

C =
L

2g11g22 − P
< 1

• The two-port is stable if 0 < C < 1.

• It’s more common to use the inverse of C as the stability measure

2g11g22 − P

L
> 1

• The above definition of stability is perhaps the most common

K =
2ℜ(Y11)ℜ(Y22) −ℜ(Y12Y21)

|Y12Y21|
> 1

• The above expression is identical if we interchnage ports 1/2. Thus it’s the general
condition for stability.

• Note that K > 1 is the same condition for the maximum stable gain derived last
lecture. The connection is now more obvious. If K < 1, then the maximum gain is
infinity!
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Stability From Another Perspective

• We can also derive stability in terms of the input reflection coefficient. For a
general two-port with load ΓL we have

v−2 = Γ−1
L

v+
2 = S21v+

1 + S22v+
2

v+
2 =

S21

Γ−1
L

− S22

v−1

v−1 =

„

S11 +
S12S21ΓL

1 − ΓLS22

«

v+
1

Γ = S11 +
S12S21ΓL

1 − ΓLS22

• If |Γ| < 1 for all ΓL, then the two-port is stable

Γ =
S11(1 − S22ΓL) + S12S21ΓL

1 − S22ΓL

=
S11 + ΓL(S21S12 − S11S22)

1 − S22ΓL

=
S11 − ∆ΓL

1 − S22ΓL
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Stability Circle

• To find the boundary between stability/instability, let’s set |Γ| = 1

˛

˛

˛

˛

S11 − ∆ΓL

1 − S22ΓL

˛

˛

˛

˛

= 1

|S11 − ∆ΓL| = |1 − S22ΓL|

• After some algebraic manipulations, we arrive at the following equation

˛

˛

˛

˛

Γ − S∗
22 − ∆∗S11

|S22|2 − |∆|2

˛

˛

˛

˛

=
|S12S21|

|S22|2 − |∆|2

• This is of course an equation of a circle, |Γ − C| = R, in the complex plane with
center at C and radius R

• Thus a circle on the Smith Chart divides the region of instability from stability.
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Example: Stability Circle

CS

RS

|S11| < 1

sta
ble

 re
gi

o
n

unstable

 re
g
io

n

• In this example, the origin
of the circle lies outside
the stability circle but a
portion of the circle falls
inside the unit circle. Is
the region of stability
inside the circle or
outside?

• This is easily determined
if we note that if ΓL = 0,
then Γ = S11. So if S11 <

1, the origin should be in
the stable region. Other-
wise, if S11 > 1, the origin
should be in the unstable
region.
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Stability: Unilateral Case

• Consider the stability circle for a unilateral two-port

CS =
S∗

11 − (S∗
11S∗

22)S22

|S11|2 − |S11S22|2
=

S∗
11

|S11|2

RS = 0

|CS | =
1

|S11|

• The cetner of the circle lies outside of the unit circle if |S11| < 1. The same is true
of the load stability circle. Since the radius is zero, stability is only determined by
the location of the center.

• If S12 = 0, then the two-port is unconditionally stable if S11 < 1 and S22 < 1.

• This result is trivial since
ΓS

˛

˛

S12=0 = S11

• The stability of the source depends only on the device and not on the load.
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Mu Stability Test

• If we want to determine if a two-port is unconditionally stable, then we should use
the µ test

µ =
1 − |S11|2

|S22 − ∆S∗
11| + |S12S21|

> 1

• The µ test not only is a test for unconditional stability, but the magnitude of µ is a
measure of the stability. In other words, if one two port has a larger µ, it is more
stable.

• The advantage of the µ test is that only a single parameter needs to be evaluated.
There are no auxiliary conditions like the K test derivation earlier.

• The derivaiton of the µ test can proceed as follows. First let ΓS = |ρs|ejφ and
evaluate Γout

Γout =
S22 − ∆|ρs|ejφ

1 − S11|ρs|ejφ

• Next we can manipulate this equation into the following eq. for a circle
|Γout − C| = R

˛

˛

˛

˛

Γout +
|ρs|S∗

11∆ − S22

1 − |ρs||S11|2

˛

˛

˛

˛

=

p

|ρs||S12S21|
(1 − |ρs||S11|2)
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Mu Test (cont)

• For a two-port to be unconditionally stable, we’d like Γout to fall within the unit
circle

||C| + R| < 1

||ρs|S∗
11∆ − S22| +

p

|ρs||S21S12| < 1 − |ρs||S11|2

||ρs|S∗
11∆ − S22| +

p

|ρs||S21S12| + |ρs||S11|2 < 1

• The worse case stability occurs when |ρs| = 1 since it maximizes the left-hand
side of the equation. Therefore we have

µ =
1 − |S11|2

|S∗
11∆ − S22| + |S12S21|

> 1
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K-∆ Test

• The K stability test has already been derived using Y parameters. We can also do
a derivation based on S parameters. This form of the equation has been attributed
to Rollett and Kurokawa.

• The idea is very simple and similar to the µ test. We simply require that all points
in the instability region fall outside of the unit circle.

• The stability circle will intersect with the unit circle if

|CL| − RL > 1

or
|S∗

22 − ∆∗S11| − |S12S21|
|S22|2 − |∆|2 > 1

• This can be recast into the following form (assuming |∆| < 1)

K =
1 − |S11|2 − |S22|2 + |∆|2

2|S12||S21|
> 1
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N -Port Passivity

• We would like to find if an N -port is active or passive. By definition, an N -port is
passive if it can only absorb net power. The total net complex power flowing into or
out of a N port is given by

P = (V ∗
1 I1 + V ∗

2 I2 + · · · ) = (I∗1V1 + I∗2 V2 + · · · )

• If we sum the above two terms we have

P =
1

2
(v∗)T i +

1

2
(i∗)T v

• For vectors of current and voltage i and v. Using the admittanc ematrix i = Y v,
this can be recast as

P =
1

2
(v∗)T Y v +

1

2
(Y ∗v∗)T v =

1

2
(v∗)T Y v +

1

2
(v∗)T (Y ∗)T v

P = (v∗)T 1

2
(Y + (Y ∗)T )v = (v∗)T YHv

• Thus for a network to be passive, the Hermitian part of the matrix YH should be
positive semi-definite.
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Two-Port Passivity

• For a two-port, the condition for passivity can be simplified as follows. Let the
general hybrid admittance matrix for the two-port be given by

H(s) =

 

k11 k12

k21 k22

!

=

 

m11 m12

m21 m22

!

+ j

 

n11 n12

n21 n22

!

HH(s) =
1

2
(H(s) + H∗(s))

=

 

m11
1
2
((m12 + m21) + j(n12 − n21))

((m12 + m21) + j(n21 − n12)) m22

!

• This matrix is positive semi-definite if

m11 > 0 m22 > 0 detHn(s) ≥ 0 or

4m11m22 − |k12|2 − |k21|2 − 2ℜ(k12k21) ≥ 0

4m11m22 ≥ |k12 + k∗
21|2
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Hybrid-Pi Example

roCπ

Cµ

gmvin

+

vin

−
Rπ Co

• The hybrid-pi model for a transistor is shown above. Under what conditions is this
two-port active? The hybrid matrix is given by

H(s) =
1

Gπ + s(Cπ + Cµ)

 

1 sCµ

gm − sCµ q(s)

!

q(s) = (Gπ + sCπ)(G0 + sCµ) + sCµ(Gπ + gm)

• Applying the condition for passivity we arrive at

4GπG0 ≥ g2
m

• The above equation is either satisfied for the two-port or not, regardless of
frequency. Thus our analysis shows that the hybrid-pi model is not physical. We
know from experience that real two-ports are active up to some frequency fmax.
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