EECS 242

Two-Port Gain and Stability

Prof. Niknejad

University of California, Berkeley

Input/Output Admittance

- • The input and output impedance of ^a two-port will play an important role in our discussions. The stability and power gain of the two-port is determined by thesequantities.
- \bullet In terms of y-parameters

$$
Y_{in} = \frac{I_1}{V_1} = \frac{Y_{11}V_1 + Y_{12}V_2}{V_1} = Y_{11} + Y_{12}\frac{V_2}{V_1}
$$

•The voltage gain of the two-port is given by solving the following equations

$$
-I_2 = V_2 Y_L = -(Y_{21}V_1 + V_2 Y_{22})
$$

$$
\frac{V_2}{V_1} = \frac{-Y_{21}}{Y_L + Y_{22}}
$$

• \bullet Note that for a simple transistor $Y_{21}=g_m$ $_{m}$ and so the above reduces to the familiar $g_mR_o||R_L$.

Input/Output Admittance (cont)

 \bullet We can now solve for the input and output admittance

$$
Y_{in} = Y_{11} - \frac{Y_{12}Y_{21}}{Y_L + Y_{22}}
$$

$$
Y_{out} = Y_{22} - \frac{Y_{12}Y_{21}}{Y_S + Y_{11}}
$$

 \bullet • Note that if $Y_{12} = 0$, then the input and output impedance are de-coupled

$$
Y_{in}=Y_{11}
$$

$$
Y_{out} = Y_{22}
$$

- \bullet But in general they are coupled and changing the load will change the input admittance.
- \bullet It's interesting to note the same formula derived above also works for the input/output impedance

$$
Z_{in} = Z_{11} - \frac{Z_{12}Z_{21}}{Z_L + Z_{22}}
$$

•The same is true for the hybrid and inverse hybrid matrices.

Power Gain

• \bullet We can define power gain in many different ways. The *power gain* G_p is defined as follows

$$
G_p = \frac{P_L}{P_{in}} = f(Y_L, Y_{ij}) \neq f(Y_S)
$$

- •We note that this power gain is a function of the load admittance Y_L and the two pert perspecters Y_L two-port parameters $Y_{ij}.$
- •**The available power gain is defined as follows**

$$
G_a = \frac{P_{av,L}}{P_{av,S}} = f(Y_S, Y_{ij}) \neq f(Y_L)
$$

 \bullet The available power from the two-port is denoted $P_{av,L}$ whereas the power available from the source is $P_{av,S}.$

Power Gain (cont)

•**•** Finally, the *transducer gain* is defined by

$$
G_T = \frac{P_L}{P_{av,S}} = f(Y_L, Y_S, Y_{ij})
$$

 \bullet **This is a measure of the efficacy of the two-port as it compares the power at the** load to ^a simple conjugate match.

Derivation of Power Gain

 \bullet The power gain is readily calculated from the input admittance and voltage gain

$$
P_{in} = \frac{|V_1|^2}{2} \Re(Y_{in})
$$

$$
P_L = \frac{|V_2|^2}{2} \Re(Y_L)
$$

$$
G_p = \left|\frac{V_2}{V_1}\right|^2 \frac{\Re(Y_L)}{\Re(Y_{in})}
$$

$$
G_p = \frac{|Y_{21}|^2}{|Y_L + Y_{22}|^2} \frac{\Re(Y_L)}{\Re(Y_{in})}
$$

Derivation of Available Gain

• To derive the available power gain, consider ^a Norton equivalent for the two-port where

$$
I_{eq} = I_2 = Y_{21}V_1 = \frac{Y_{21}}{Y_{11} + Y_S}I_S
$$

•The Norton equivalent admittance is simply the output admittance of the two-port

$$
Y_{eq} = Y_{22} - \frac{Y_{21}Y_{12}}{Y_{11} + Y_S}
$$

•The available power at the source and load are given by

$$
P_{av,S} = \frac{|I_S|^2}{8\Re(Y_S)}
$$

$$
P_{av,L} = \frac{|I_{eq}|^2}{8\Re(Y_{eq})}
$$

$$
G_a = \frac{|Y_{21}|^2}{|Y_{11} + Y_S|^2} \frac{\Re(Y_S)}{\Re(Y_{eq})}
$$

Transducer Gain Derivation

 \bullet The transducer gain is given by

$$
G_T = \frac{P_L}{P_{av,S}} = \frac{\frac{1}{2} \Re(Y_L) |V_2|^2}{\frac{|I_S|^2}{8 \Re(Y_S)}} = 4 \Re(Y_L) \Re(Y_S) \left| \frac{V_2}{I_S} \right|^2
$$

 \bullet We need to find the output voltage in terms of the source current. Using thevoltage gain we have and input admittance we have

$$
\left| \frac{V_2}{V_1} \right| = \left| \frac{Y_{21}}{Y_L + Y_{22}} \right|
$$

$$
I_S = V(Y_S + Y_{in})
$$

$$
\left| \frac{V_2}{I_S} \right| = \left| \frac{Y_{21}}{Y_L + Y_{22}} \right| \frac{1}{|Y_S + Y_{in}|}
$$

$$
|Y_S + Y_{in}| = \left| Y_S + Y_{11} - \frac{Y_{12}Y_{21}}{Y_L + Y_{22}} \right|
$$

 $\begin{array}{c} \hline \end{array}$ $\frac{1}{2}$ $\frac{1}{2}$

Transducer Gain (cont)

 \bullet We can now express the output voltage as ^a function of source current as

$$
\left|\frac{V_2}{I_S}\right|^2 = \frac{|Y_{21}|^2}{|(Y_S + Y_{11})(Y_L + Y_{22}) - Y_{12}Y_{21}|^2}
$$

 \bullet And thus the transducer gain

$$
G_T = \frac{4\Re(Y_L)\Re(Y_S)|Y_{21}|^2}{|(Y_S + Y_{11})(Y_L + Y_{22}) - Y_{12}Y_{21}|^2}
$$

•It's interesting to note that all of the gain expression we have derived are in the exact same form for the impedance, hybrid, and inverse hybrid matrices.

Comparison of Power Gains

 \bullet \bullet In general, $P_L\leq P_{av,L}$, with equality for a matched load. Thus we can say that

 $G_T\leq G_a$

• The maximum transducer gain as ^a function of the load impedance thus occurswhen the load is conjugately matched to the two-port output impedance

$$
G_{T,max,L} = \frac{P_L(Y_L = Y_{out}^*)}{P_{av,S}} = G_a
$$

 \bullet ■ Likewise, since P_{in} \le $P_{av,S}$, again with equality when the the two-port is conjugately matched to the source, we have

$$
G_T \leq G_p
$$

•The transducer gain is maximized with respect to the source when

$$
G_{T,max,S} = G_T(Y_{in} = Y_S^*) = G_p
$$

Bi-Conjugate Match

 \bullet When the input and output are simultaneously conjugately matched, or ^abi-conjugate match has been established, we find that the transducer gain is maximized with respect to the source and load impedance

$$
G_{T,max} = G_{p,max} = G_{a,max}
$$

• This is thus the recipe for calculating the optimal source and load impedance in tomaximize gain

$$
Y_{in} = Y_{11} - \frac{Y_{12}Y_{21}}{Y_L + Y_{22}} = Y_S^*
$$

$$
Y_{out} = Y_{22} - \frac{Y_{12}Y_{21}}{Y_S + Y_{11}} = Y_L^*
$$

 \bullet Solution of the above four equations (real/imag) results in the optimal $Y_{S,opt}$ and $Y_{L,opt}.$

Calculation of Optimal Source/Load

•• Another approach is to simply equate the partial derivatives of G_T with respect to the source/load admittance to find the maximum point

$$
\frac{\partial G_T}{\partial G_S} = 0 \qquad \qquad \frac{\partial G_T}{\partial G_L} = 0
$$

$$
\frac{\partial G_T}{\partial B_S} = 0 \qquad \qquad \frac{\partial G_T}{\partial B_L} = 0
$$

• Again we have four equations. But we should be smarter about this and recall that the maximum gains are all equal. Since $G_{\boldsymbol{a}}$ source or load, we can get away with only solving two equations. For instance a and G_p are only a function of the

$$
\frac{\partial G_a}{\partial G_S} = 0 \qquad \qquad \frac{\partial G_a}{\partial B_S} = 0
$$

- This yields $Y_{S,opt}$ and by setting $Y_L=Y_{opt}^*$ • \vec{v}_{out}^* we can find the $Y_{L,opt}.$
- •Likewise we can also solve

$$
\frac{\partial G_p}{\partial G_L} = 0 \qquad \qquad \frac{\partial G_p}{\partial B_L} = 0
$$

 \bullet And now use $Y_{S,opt}=Y_{ir}^*$ • in :

Optimal Power Gain Derivation

 \bullet $\bullet~$ Let's outline the procedure for the optimal power gain. We'll use the power gain G_p and take partials with respect to the load. Let

$$
Y_{jk} = m_{jk} + jn_{jk}
$$

\n
$$
Y_L = G_L + jX_L
$$

\n
$$
Y_{12}Y_{21} = P + jQ = Le^{j\phi}
$$

\n
$$
G_p = \frac{|Y_{21}|^2}{D}G_L
$$

\n
$$
\Re\left(Y_{11} - \frac{Y_{12}Y_{21}}{Y_L + Y_{22}}\right) = m_{11} - \frac{\Re(Y_{12}Y_{21}(Y_L + Y_{22})^*)}{|Y_L + Y_{22}|^2}
$$

\n
$$
D = m_{11}|Y_L + Y_{22}|^2 - P(G_L + m_{22}) - Q(B_L + n_{22})
$$

\n
$$
\frac{\partial G_p}{\partial B_L} = 0 = -\frac{|Y_{21}|^2 G_L}{D^2} \frac{\partial D}{\partial B_L}
$$

Optimal Load (cont)

 \bullet Solving the above equation we arrive at the following solution

$$
B_{L,opt} = \frac{Q}{2m_{11}} - n_{22}
$$

 \bullet In ^a similar fashion, solving for the optimal load conductance

$$
G_{L,opt} = \frac{1}{2m_{11}} \sqrt{(2m_{11}m_{22} - P)^2 - L^2}
$$

 \bullet If we substitute these values into the equation for G_p (lot's of algebra ...), we arrive at

$$
G_{p,max} = \frac{|Y_{21}|^2}{2m_{11}m_{22} - P + \sqrt{(2m_{11}m_{22} - P)^2 - L^2}}
$$

Final Solution

 \bullet \bullet Notice that for the solution to exists, G_L must be a real number. In other words

$$
(2m_{11}m_{22} - P)^{2} > L^{2}
$$

$$
(2m_{11}m_{22} - P) > L
$$

$$
K = \frac{2m_{11}m_{22} - P}{L} > 1
$$

 \bullet This factor K plays an important role as we shall show that it also corresponds to
an unconditionally stable two port, W_0 can recent all of the work up to bere in an unconditionally stable two-port. We can recast all of the work up to here in terms of K

$$
Y_{S,opt} = \frac{Y_{12}Y_{21} + |Y_{12}Y_{21}|(K + \sqrt{K^2 - 1})}{2\Re(Y_{22})}
$$

$$
Y_{L,opt} = \frac{Y_{12}Y_{21} + |Y_{12}Y_{21}|(K + \sqrt{K^2 - 1})}{2\Re(Y_{11})}
$$

$$
G_{p,max} = G_{T,max} = G_{a,max} = \frac{Y_{21}}{Y_{12}} \frac{1}{K + \sqrt{K^2 - 1}}
$$

Maximum Gain

•The maximum gain is usually written in the following insightful form

$$
G_{max} = \frac{Y_{21}}{Y_{12}}(K - \sqrt{K^2 - 1})
$$

 \bullet For a reciprocal network, such as a passive element, $Y_{12} = Y_{21}$ and thus the maximum sain is given by the assessed factor. maximum gain is given by the second factor

$$
G_{r,max} = K - \sqrt{K^2 - 1}
$$

- •Since $K > 1$, $|G_{r,max}| < 1$. The reciprocal gain factor is known as the efficiency of the reciprocal network.
- \bullet The first factor, on the other hand, is ^a measure of the non-reciprocity.

Unilateral Maximum Gain

• For ^a unilateral network, the design for maximum gain is trivial. For ^a bi-conjugatematch

$$
Y_S = Y_{11}^*
$$

$$
Y_L = Y_{22}^*
$$

$$
G_{T,max} = \frac{|Y_{21}|^2}{4m_{11}m_{22}}
$$

Stability of ^a Two-Port

- • ^A two-port is unstable if the admittance of either port has ^a negative conductance for ^a passive termination on the second port. Under such ^a condtion, the two-port can oscillate.
- \bullet Consider the input admittance

$$
Y_{in} = G_{in} + jB_{in} = Y_{11} - \frac{Y_{12}Y_{21}}{Y_{22} + Y_L}
$$

•Using the following definitions

$$
Y_{11} = g_{11} + jb_{11}
$$

\n
$$
Y_{12}Y_{21} = P + jQ = L\angle\phi
$$

\n
$$
Y_{12} = G_L + jB_L
$$

\n
$$
Y_L = G_L + jB_L
$$

• \bullet Now substitute real/imag parts of the above quantities into Y_{in}

$$
Y_{in} = g_{11} + jb_{11} - \frac{P + jQ}{g_{22} + jb_{22} + G_L + jB_L}
$$

$$
= g_{11} + jb_{11} - \frac{(P + jQ)(g_{22} + G_L - j(b_{22} + B_L))}{(g_{22} + G_L)^2 + (b_{22} + B_L)^2}
$$

University of California, Berkeley

Input Conductance

•Taking the real part, we have the input conductance

$$
\Re(Y_{in}) = G_{in} = g_{11} - \frac{P(g_{22} + G_L) + Q(b_{22} + B_L)}{(g_{22} + G_L)^2 + (b_{22} + B_L)^2}
$$

$$
= \frac{(g_{22} + G_L)^2 + (b_{22} + B_L)^2 - \frac{P}{g_{11}}(g_{22} + G_L) - \frac{Q}{g_{11}}(b_{22} + B_L)}{D}
$$

- •Since $D > 0$ if $g_{11} > 0$, we can focus on the numerator. Note that $g_{11} > 0$ is a
requirement since otherwise socillations would securifor a short singuit at part of requirement since otherwise oscillations would occur for ^a short circuit at port 2.
- •The numerator can be factored into several positive terms

$$
N = (g_{22} + G_L)^2 + (b_{22} + B_L)^2 - \frac{P}{g_{11}}(g_{22} + G_L) - \frac{Q}{g_{11}}(b_{22} + B_L)
$$

= $\left(G_L + \left(g_{22} - \frac{P}{2g_{11}}\right)\right)^2 + \left(B_L + \left(b_{22} - \frac{Q}{2g_{11}}\right)\right)^2 - \frac{P^2 + Q^2}{4g_{11}^2}$

Input Conductance (cont)

 \bullet Now note that the numerator can go negative only if the first two terms are smaller than the last term. To minimize the first two terms, choose $G_L = 0$ and $B_L= \left(b_{22}-\frac{Q}{2g_1}\right)$ $\left(\frac{Q}{2g_{11}}\right)$ (reactive load)

$$
N_{min} = \left(g_{22} - \frac{P}{2g_{11}}\right)^2 - \frac{P^2 + Q^2}{4g_{11}^2}
$$

 \bullet **•** And thus the above must remain positive, $N_{min}>0$, so

$$
\left(g_{22} + \frac{P}{2g_{11}}\right)^2 - \frac{P^2 + Q^2}{4g_{11}^2} > 0
$$

$$
g_{11}g_{22} > \frac{P+L}{2} = \frac{L}{2}(1 + \cos \phi)
$$

Linvill/Llewellyn Stability Factors

 \bullet Using the above equation, we define the Linvill stability factor

$$
L<2g_{11}g_{22}-P
$$

$$
C = \frac{L}{2g_{11}g_{22} - P} < 1
$$

- • \bullet The two-port is stable if $0 < C < 1$.
- It's more common to use the inverse of C as the stability measure •

$$
\frac{2g_{11}g_{22} - P}{L} > 1
$$

•The above definition of stability is perhaps the most common

$$
K = \frac{2\Re(Y_{11})\Re(Y_{22}) - \Re(Y_{12}Y_{21})}{|Y_{12}Y_{21}|} > 1
$$

- • The above expression is identical if we interchnage ports 1/2. Thus it's the general condition for stability.
- \bullet \bullet Note that $K > 1$ is the same condition for the maximum stable gain derived last lecture. The connection is now more obvious. If $K < 1,$ then the maximum gain is infinity!

Stability From Another Perspective

 \bullet We can also derive stability in terms of the input reflection coefficient. For ^ageneral two-port with load Γ_L we have

$$
v_2^- = \Gamma_L^{-1} v_2^+ = S_{21} v_1^+ + S_{22} v_2^+
$$

$$
v_2^+ = \frac{S_{21}}{\Gamma_L^{-1} - S_{22}} v_1^-
$$

$$
v_1^- = \left(S_{11} + \frac{S_{12} S_{21} \Gamma_L}{1 - \Gamma_L S_{22}} \right) v_1^+
$$

$$
\Gamma = S_{11} + \frac{S_{12} S_{21} \Gamma_L}{1 - \Gamma_L S_{22}}
$$

• If $|\Gamma|$ $<$ 1 for all Γ_L , then the two-port is stable

$$
\Gamma = \frac{S_{11}(1 - S_{22}\Gamma_L) + S_{12}S_{21}\Gamma_L}{1 - S_{22}\Gamma_L} = \frac{S_{11} + \Gamma_L(S_{21}S_{12} - S_{11}S_{22})}{1 - S_{22}\Gamma_L}
$$

$$
=\frac{S_{11}-\Delta\Gamma_L}{1-S_{22}\Gamma_L}
$$

Stability Circle

 \bullet To find the boundary between stability/instability, let's set $|\Gamma|=1$

$$
\left|\frac{S_{11} - \Delta\Gamma_L}{1 - S_{22}\Gamma_L}\right| = 1
$$

$$
|S_{11} - \Delta \Gamma_L| = |1 - S_{22} \Gamma_L|
$$

•After some algebraic manipulations, we arrive at the following equation

$$
\left|\Gamma - \frac{S_{22}^* - \Delta^* S_{11}}{|S_{22}|^2 - |\Delta|^2}\right| = \frac{|S_{12}S_{21}|}{|S_{22}|^2 - |\Delta|^2}
$$

- \bullet **This is of course an equation of a circle,** $|\Gamma - C| = R$ **, in the complex plane with**
 Contains C and radius R center at C and radius R
- **•** Thus a circle on the Smith Chart divides the region of instability from stability. \bullet

Example: Stability Circle

- • In this example, the originof the circle lies outside the stability circle but ^a portion of the circle falls inside the unit circle. Isthe region of stabilityinside the circle oroutside?
- \bullet This is easily determinedif we note that if $\Gamma_L=0,$ then $\Gamma=S_{11}.$ So if $S_{11}<$ ¹, the origin should be in the stable region. Otherwise, if $S_{11}>1,$ the origin should be in the unstableregion.

Stability: Unilateral Case

•Consider the stability circle for ^a unilateral two-port

$$
C_S = \frac{S_{11}^* - (S_{11}^* S_{22}^*) S_{22}}{|S_{11}|^2 - |S_{11} S_{22}|^2} = \frac{S_{11}^*}{|S_{11}|^2}
$$

$$
R_S = 0
$$

$$
|C_S| = \frac{1}{|S_{11}|}
$$

- •The cetner of the circle lies outside of the unit circle if $|S_{11}| < 1$. The same is true of the load stability circle. Since the radius is zero, stability is only determined bythe location of the center.
- •If $S_{12} = 0$, then the two-port is unconditionally stable if $S_{11} < 1$ and $S_{22} < 1$.
- •This result is trivial since

$$
\Gamma_S |_{S_{12}=0} = S_{11}
$$

•The stability of the source depends only on the device and not on the load.

Mu Stability Test

• If we want to determine if ^a two-port is unconditionally stable, then we should usethe μ test

$$
\mu = \frac{1 - |S_{11}|^2}{|S_{22} - \Delta S_{11}^*| + |S_{12}S_{21}|} > 1
$$

- •The μ test not only is a test for unconditional stability, but the magnitude of μ is a measure of the stability. In other words, if one two port has a larger μ , it is more stable.
- \bullet The advantage of the μ test is that only a single parameter needs to be evaluated. There are no auxiliary conditions like the K test derivation earlier.
- •• The derivaiton of the μ test can proceed as follows. First let $\Gamma_S = |\rho_s|e^{j\phi}$ and evaluate Γ_{out}

$$
\Gamma_{out} = \frac{S_{22} - \Delta|\rho_s|e^{j\phi}}{1 - S_{11}|\rho_s|e^{j\phi}}
$$

• Next we can manipulate this equation into the following eq. for ^a circle $|\Gamma_{out} - C| = R$

$$
\left|\Gamma_{out} + \frac{|\rho_s|S_{11}^* \Delta - S_{22}}{1 - |\rho_s| |S_{11}|^2}\right| = \frac{\sqrt{|\rho_s|} |S_{12} S_{21}|}{(1 - |\rho_s| |S_{11}|^2)}
$$

University of California, Berkeley

Mu Test (cont)

 \bullet For a two-port to be unconditionally stable, we'd like Γ_{out} to fall within the unit circle

$$
||C| + R| < 1
$$
\n
$$
||\rho_s| S_{11}^* \Delta - S_{22} + \sqrt{|\rho_s|} |S_{21} S_{12}| < 1 - |\rho_s| |S_{11}|^2
$$
\n
$$
||\rho_s| S_{11}^* \Delta - S_{22}| + \sqrt{|\rho_s|} |S_{21} S_{12}| + |\rho_s| |S_{11}|^2 < 1
$$

 \bullet The worse case stability occurs when $|\rho_s|=1$ since it maximizes the left-hand side of the equation. Therefore we have

$$
\mu = \frac{1 - |S_{11}|^2}{|S_{11}^* \Delta - S_{22}| + |S_{12}S_{21}|} > 1
$$

$K-\Delta$ Test

- \bullet The K stability test has already been derived using Y parameters. We can also do
a derivation based an S parameters. This form of the equation bas been attributed a derivation based on S parameters. This form of the equation has been attributed to Rollett and Kurokawa.
- \bullet The idea is very simple and similar to the μ test. We simply require that all points in the instability region fall outside of the unit circle.
- •The stability circle will intersect with the unit circle if

$$
|C_L| - R_L > 1
$$

or

$$
\frac{|S_{22}^* - \Delta^* S_{11}| - |S_{12}S_{21}|}{|S_{22}|^2 - |\Delta|^2} > 1
$$

•● This can be recast into the following form (assuming $|\Delta| < 1$)

$$
K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |\Delta|^2}{2|S_{12}||S_{21}|} > 1
$$

N-Port Passivity

 \bullet We would like to find if an N-port is active or passive. By definition, an N-port is passive if it can only absorb net power. The total net complex power flowing into or out of a N port is given by

$$
P = (V_1^* I_1 + V_2^* I_2 + \cdots) = (I_1^* V_1 + I_2^* V_2 + \cdots)
$$

•If we sum the above two terms we have

$$
P = \frac{1}{2} (v^*)^T i + \frac{1}{2} (i^*)^T v
$$

 \bullet For vectors of current and voltage i and v. Using the admittanc ematrix $i = Yv$,
this can be recoet as this can be recast as

$$
P = \frac{1}{2} (v^*)^T Y v + \frac{1}{2} (Y^* v^*)^T v = \frac{1}{2} (v^*)^T Y v + \frac{1}{2} (v^*)^T (Y^*)^T v
$$

$$
P = (v^*)^T \frac{1}{2} (Y + (Y^*)^T) v = (v^*)^T Y_H v
$$

 \bullet • Thus for a network to be passive, the Hermitian part of the matrix Y_H should be nositive semi-definite positive semi-definite.

Two-Port Passivity

 \bullet **•** For a two-port, the condition for passivity can be simplified as follows. Let the general hybrid admittance matrix for the two-port be given by

$$
H(s) = \begin{pmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} + j \begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix}
$$

$$
H_H(s) = \frac{1}{2} (H(s) + H^*(s))
$$

$$
= \left(\begin{array}{c}m_{11} \qquad \qquad \frac{1}{2}((m_{12}+m_{21})+j(n_{12}-n_{21})) \\ ((m_{12}+m_{21})+j(n_{21}-n_{12})) \qquad \qquad m_{22}\end{array}\right)
$$

 \bullet This matrix is positive semi-definite if

> m_{11} $>$ $m_{22} > 0$ $det H_n(s) \geq 0$ or

$$
4m_{11}m_{22} - |k_{12}|^2 - |k_{21}|^2 - 2\Re(k_{12}k_{21}) \ge 0
$$

 $4m_{11}m_{22} \geq |k_{12}+k_{21}^{*}|^2$

Hybrid-Pi Example

• The hybrid-pi model for ^a transistor is shown above. Under what conditions is thistwo-port active? The hybrid matrix is given by

$$
H(s) = \frac{1}{G_{\pi} + s(C_{\pi} + C_{\mu})} \begin{pmatrix} 1 & sC_{\mu} \\ g_m - sC_{\mu} & q(s) \end{pmatrix}
$$

$$
q(s) = (G_{\pi} + sC_{\pi})(G_0 + sC_{\mu}) + sC_{\mu}(G_{\pi} + g_m)
$$

•Applying the condition for passivity we arrive at

$$
4G_{\pi}G_0 \ge g_m^2
$$

• The above equation is either satisfied for the two-port or not, regardless of frequency. Thus our analysis shows that the hybrid-pi model is not physical. Weknow from experience that real two-ports are active up to some frequency $f_{max}.$

References

- \bullet High-Frequency Amplifiers, R. Carson, Wiley, New York, NY, 1982.
- •Active Network Analysis, Wai-Kai Chen, World Scientific Publishing Co., 1991.