
EECS 242:   
 Volterra/Wiener Representation 

of Non-Linear Systems  



Linear Input/Output Representation 

A linear system is completely characterized by its 
impulse response function: 

LTI 

causality  

y(t) has memory since it depends on  



Non-Linear Order-N Convolution 

Consider a degree-n system: 

kernel 

If 

Change of variables - 



Generalized Convolution 

Generalization of convolution integral of order n: 



Non-Linear Example 

x(t) y(t) 



Non-Linear Example (cont) 

Kernel is not in unique.  We can define a unique “symmetric” kernel. 



Symmetry of Kernel 
Kernel h can be expressed as a symmetric function of its 
arguments:  Consider output of a system where we permute 
any number of indices of h: 

For n arguments, n! permutations 



Symmetric kernel 

We create a symmetric kernel by  

System output identical to original unsymmetrical kernel 

Volterra Series: “Polynomial” of degree N 



Volterra Series 

power series: 
we get ordinary 

It can be rigorously shown by the Stone-Weierstrass theorem 
that the above polynomial approximates a non-linear system 
to any desired precision if N is made sufficiently large. 



Non-rigorous “proof” 

Say y(t) is a non-linear function of               for all 
(all past input) 

Fix time t and say that               can be characterized 
by the set                              so that y(t) is some non-
linear function: 



Non-Rigorous Proof (cont) 

Let                        be an orthonormal basis for the space 

Thus 

“inner product” 



Non-Rigorous Proof (cont) 

Expand f into a Taylor series  

This is the Volterra/Wiener representation for a non-linear 
system 

Sifting Property: 



Interconnection of Non-Linear Systems 

Sum: 
y 

x 



Product Interconnection 

y 
x Product: 



Volterra Series Laplace Domain  

  Transform domain input/output representation 
  Linear systems in time domain 

  Define Generalized Laplace Transform: 



Volterra Series Example 
  Generalized transform of a function of two 

variables: 



Properties of Transform 

  Property 1:  L is linear 
  Property 2: 

  Property 3:  Convolution form #1 



Properties of Generalized Transform 

  Property 4:  Convolution Form #2: 

  Property 5:  Time delay 



  Cascade #1: 

  Cascade #2: 

Cascades of Systems 

non-linear linear 

non-linear linear 

x y 

x y 



Cascade Example 

x y 

property #1 property #2 

not symmetric 



Exp Response of n-th Order System 

continued 



Exponential Response (cont) 



The Final Result… 

  We’ve seen this before…  A particular 
frequency mix                           has response 



Frequency mix response 

  Sum over all vectors      such that 

  If                   is symmetric, then we can 
group the terms as before 



Important special case P=n 

  To derive                       , we can apply n 
exponentials to a degree n system and the 
symmetric transfer function is given by      
times the coefficient of 

  We call this the “Growing Exponential 
Method”  



Example 1 

  Excite system with two-tones: 

x y 
v 



Example 1 (cont) 



Example 2 
  Non-linear system in parallel with linear 

system: 

x y 

y1 

y2 

linear 

non-linear 

composite 



Example 2 (cont) 

assuming H2 is symmetric 

Notation: 



Example 2 Again 

  Redo example with growing exponential 
method 

  Overall system is third order, so apply sum 
of 3 exponentials to system 

x y 

y1 

y2 

linear 

non-linear 



Example 3 

  We can drop terms that we don’t care about 
  We only care about the final term                    

so for now ignore terms except              
where  

  Focus on terms in y2 first 

symmetric kernel 



Example 3 (cont) 

  Now the product of         &          produces 
terms like 



Capacitive non-linearity 
  Non-linear capacitors: 

  Small signal (incremental) capacitance 

BJT 

MOSFET 

Cj 

Vj 

small signal cap 
cap/V 

cap/V2 



Cap Non-Linearity (cont) 

Model: 

Non-Linear Linear 



Overall Model 

+ 

v 

- 



Cap Model Decomposition 

  Let  

. 

. 



A Real Circuit Example 

  Find distortion in vo for sinusoidal steady 
state response 

  Need to also find 

(Note: DC Bias not shown) 



  Setup non-linearities   
  Diode: 

  Capacitor: 

Circuit Example (cont) 



Second-Order Terms 

  Solve for A and B 

(1) 

(2) 



Third-Order Terms 

  Solve for A3 & B3 

(1) 

(2) 



Distortion Calc at High Freq 

Compute IM3 at 2ω2-ω1 only generated by n ≥3 

-3   -2  -1  +1  +2   +3 

H3 is symmetric so we can group all terms producing this 
frequency mix by H3 

For equal amp o/p signal, we adjust 
each input amp so that: 



At low frequency: 

Disto Calc at High Freq (2) 

  Conclude that at high frequency all third 
order distortion (fractional) ∝ (signal level)2 
for small distortion all second order ∝ 
(signal level) 



  Similarly 

  Low Freq: 

  No fixed relation between HD3 and IM3 

harmonics filtered and 
reduced substantially 

Disto Calc at High Freq (3) 



  Let 

  Look for 

High Freq Distortion & Feedback 
+ 

˗ 



  First-order: 
  Second-order: Frequency dependent 

loop gain 

High Freq Disto & FB (2) 



  Feedback reduces distortion at low 
frequency and high frequency             for a 
fixed output signal level 

  True at high frequency if we use               
where ω is evaluated at the frequency of the 
distortion product  

  While IM/HD no longer related, CM, TB, 
P-1dB, PBL are related since frequencies 
close together 

  Most circuits (90%) can be analyzed with a 
power series 

Comments about HF/LF Disto 
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