
EECS 242:   
Analysis of Memoryless  

Weakly Non-Lineary Systems 



Review of Linear Systems 

  Complete description of a general time-varying linear 
system. Note output cannot have a DC offset! 
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Linear: 

 Linear 



Time-invariant Linear Systems 

  Time-invariant Linear Systems has h(t,τ)=h(t-τ) 
  Relative function of time rather than absolute 
  The transfer function is “stationary” 
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convolution in time is 
product in frequency 



Stable Systems 

  Linear, time invariant (LTI) system cannot 
generate frequency content not present in input 
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Poles of H are strictly in the left 
hand plane (LHP) 

if 



Memoryless Linear System 

  If function is continuous at xo, then we can do a 
Taylor Series expansion about xo

: 
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No “DC” 

No Delay 

xo 

yo 



Taylor Series Expansion 
  This expansion has a certain radius of 

convergence.  If we truncate the series, we can 
compute a bound on the error 

  Let’s assume: 
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Maximum excursion 
must be less than radius 
of convergence.  
Certainly the max Ak has 
to be smaller than the 
radius of convergence. 



Sinusoidal Exciation 
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m-times 



General Mixing Product 
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We have frequency components: 
where kp ranges over 2N values 

Terms in summation: 

Example: Take m=3, N=2 

64 Terms in summation! 

64 Terms 

HD3 

IM3 

gain expression or 
compression 



Vector Frequency Notation 
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Define 

2N-vector where kj denotes the number of times a 
particular frequency appears in a give summation: 

-2    –1      0      1    2 

Sum= order of 
non-linearity 

No DC terms 



Multinomial Coefficient 
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For a fixed vector     , how many different 
sum vectors are there?  

m frequencies can be summed m! different ways, 
but order is immaterial. 

Each coefficient kj can be ordered kj! ways. 
Therefore, we have:   

Multinomial coefficient 



Game of Cards (example) 

  3 Cards: 3! or six ways to order cards 
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 

 

 
ways to order 

Since R1 = R2,  

Reds not distinguished 



Making Conjugate Pairs 
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Usually, we only care about a particular frequency 
mix generated by certain order non-linearity 

Since our signal is real, each term has a complex 
conjugate.  Hence, there is another:  

reverse order 

Taking the complex conjugates in pairs: 



Amplitude of Mix 
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Thus the amplitude of any particular 
frequency component is: 

Ex: IM3 product generated by the cubic term 
IM3: 

-2  -1   1   0 

m=3 

N=2 

Amplitude of IM3 relative to fundamental: 



Gain Compression/Expansion 

  How much gain compression occurs due to cubic 
and pentic (x5) terms? 
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m=3, N=1 

appear 
anywhere 

This to 
appear twice 
anywhere 

amp. of 
fund: 

App. Gain: Gain depends on signal amplitude 

pentic: m=5, N=1 

-1   1 

App. Gain: 

cubic: 



Who wins?  Pentic or Cubic? 
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R= Gain Reduction  due to Cubic 
Gain Reduction  due to Pentic 

Take an exponential transfer function and consider gain 
compression: 



Compression for Exp (BJT) 

  When R=1, pentic non-linearity contributes equally to gain 
compression… 
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R=1 



Summary of Distortion 

  Due to non-linearity, y(t) has frequency 
components not present in input.  For sinusoidal 
excitation by N tones, we M tones in output: 
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x(t) y(t) f(x) 

m: Order of highest term in non-linearity (Taylor exp.) 



Amplitude of Frequency Mix 
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Particular frequency mix     has frequency 

The amplitude of any particular frequency mix  

amplitude 



Harmonic Distortion 

  For an input frequency ωj, each 
order non-linearity (power) 
produces a jth order harmonic in 
output  
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HD2 
HD3 

dB 

Signal amplitude (Signal amplitude)2 

2 dB increase for 1 dB signal increase 



Intermodulation 

  For a two-tone input to a memoryless non-linearity, output 
contains               &                due to cubic power and              
&             due to second order power. 
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IM3 terms IM2 IM2 

RF band or 
“channel” 

Power (dB) 



Filtering Intermodulation 

  IM2 products fall at much lower (DC) and higher 
frequencies (2ωo). These signals appear as interference to 
others, but can be attenuated by filtering 

  IM3 products cannot be filtered for close tones. 
  In a direct conversion receiver, IM2 is important due to 

DC.   
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IM3 important 

(AC coupled) 

DC 

IM2 important 

(direct conv receiver) 

AMP 

LO=RF 

RF 



IM/Harmonic Relations 
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Signal level 

(Signal level)2 



Triple Beat 

  Triple Beat: Apply three sine waves and observe 
effect of cubic non-linearity 
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-3 -2 -1 1 2 3 



Intercept Point 
  Intercept Point: Apply a two tone input and plot output 

power and IM powers.  The intercept point in the 
extrapolated signal power level which causes the distortion 
power to equal the fundamental power. 
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Intercept/IM Calculations 

  Say an amplifier has an IIP3 = -10 dBm.  What is the 
amplifier signal/distortion (IM3) ratio if we drive it 
with -25 dBm? 
  Note: IM3 = 0 dB at Pin = -10 dBm 
  If we back-off by 15 dB, the IM3 improves at a rate of 2:1 
  For Pin = -25 dBm (15 dB back-off), we have therefore IM3 

= 30dBc 
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intercept signal level 



Gain Compression and Expansion 
  To regenerate the fundamental for the N’th power, 

we need to sum k positive frequencies with k-1 
negative frequencies, so N = 2k-1  N must be an 
odd power 
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k k-1 

GP 
1dB 

Pin 
P-1dB 



P1dB Compression Point 
  An important specification for an amplifier is the 

1dB compression point, or the input power 
required to lower the gain by 1dB 
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Assume a3/a1 < 0 

About 9.6dB 
lower than 
IIP3 



Dynamic Range 

  P-1dB is a convenient 
“maximum” signal level 
which sets the upper 
bound on the amplifier 
“linear” regime.  Note 
that at this power, the 
IM3 ~ 20 dBc. 

  The lower bound is set 
by the amplifier noise 
figure. 
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Blocking (or Jamming) 
  Blocker: Any large interfering signal 
  PBL = Blocking level.  Interfering signal level in dBm 

which causes a +3dB drop in gain for small desired signal 
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LNA 



Jamming Analysis 
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Let: 

small desired 
signal 

Large blocker 

Cubic non-linearity at ω1 

Regular gain compression 

Gain compression of desired signal on 
blocker 

Gain compression of blocker on 
desired signal 

Gain compression of blocker on 
blocker 



Jamming Analysis (cont) 
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Count the ways: 

-2  –1  +1  +2 

Apparent gain =  

gain w/o blocker 

gain reduction or 
expansion due to 
blocker 



Blocking Power ~ P1dB 
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Effect of Feedback on Disto 

  Review from 142: 
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f 

sε 

sfb 

si so - 



New Non-Linear Coefficients 

UC Berkeley EECS 242 Copyright © Prof. Ali M Niknejad 

Loop gain T 

For high loop gain, the 
distortion is very small.  
Even though the gain 
drops, the distortion drops 
with loop gain since b2 
drops with a higher power. 

The cubic term has two 
components, the original 
cubic and a second order 
interaction term.  If an 
amplifier does not have 
cubic, FB creates it (MOS 
with Rs) 



Series Inversion 
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Series Cascade 
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Second-order 
interaction 



IIP2 Cascade 

  The cascade IIP2 is reduced due to the gain of the first 
stage: 

  To calculate the overall IIP2, simply input refer the second 
stage IIP2 by the voltage gain of the first stage. 

  The overall IIP2 is a parallel combination of the first and 
second stage. 
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IIP3 Cascade 

  Using the same approach, we can calculate the IIP3 of a 
cascade.  To simplify the result, neglect the effect of 
second order interaction: 

  Input refer the IIP3 of the second stage by the power gain 
of the first stage. 
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