EXAM REVIEW TOPICS:

Lecture 2:

* What is current?
 * Sign convention
 * Positive and negative charge
 * AC versus DC

* What is voltage?
 * How is it related to energy?
 * What is the “ground” potential?
 * What is the physical ground “plane” versus the reference node?

* Power?
 * Passive sign convention
 * Energy

* Components
 * Sign convention of voltage/current
 * Sign convention of power

* Voltage Source
 * Ideal voltage source
 * Real battery
 * Internal resistance/ source resistance

* Ideal switch
 * voltage/current /power

* From Physics: KCL/KVL
* Battery packs (homework)

Lecture 3:

* Conductors
 * Ideal conductors
 * Real conductors
 * Ohm’s law
 * Calculating resistance
 * Conductance
 * Power loss in conductors
 * Strain gauge as an example

* Resistors as modeling elements
 * Light bulb
\[V_{oc} = V_{int} = 1.2V \]
\[R_i = 0.65\Omega \]

\[I_{max} = \text{?} \]
\[V_{oc}' = 2.4V \]
\[R_i = 0.65\Omega + 0.6\Omega \]
\[= 1.2\Omega \]
\[I_{max} = \frac{V_{oc}}{R_i} = 2A \]

Thevenin:
- Zero out independent sources
- Find \(R_{TH} \)

\[R_i' = 0.35\Omega \]
\[I_{max}' = \frac{V_{oc}'}{R_i'} = \frac{1.2V}{0.35\Omega} = 4A \]
* Motor
* Antenna
* Speakers
* Anything passive!

* Energy loss in power delivery
 * High voltage versus high current
 * Need for transformers / AC

* Resistors
 * Series resistors
 * Parallel resistors

Lecture 4:

* Current source
* Dependent sources versus independent sources
* Resitive dividers
 * Voltage dividers
 * Current dividers
 * Shorts and opens/Winners and losers
* Variable resistors/Pots
 * Efficiency of divider circuits

Lecture 5:

* Nodal analysis
 * counting nodes
 * reference node
 * eliminating nodes
 * super nodes
 * trivial nodes
 * Nodal without dependent sources
 * Nodal with dependent sources
 * Knowns versus unknowns
 * Setting up equations in standard form (LHS = RHS)
 * LHS = unknowns
 * RHS = knowns

Lecture 6:

* Linearity and Superposition
* Thevenin Equivalent
 * Voc and Isc
 * “Req” approach without internal sources
Count Nodes: A, B, C, D

Define a REF Node: Node D ⇒ Result in eliminating other nodes.

Unk V_c

Identify Super Nodes:

- Floating Voltage Source
- Group of Connected Voltage Source

Write KCL Eq ⇒ for every unk node
\[V_{\text{out}} = -\frac{R_2}{R_1} \cdot V_{\text{AV010}} \]

\[\eta = \frac{R_{\text{SPMN}}}{R_{\text{SPMN}} + R_{\text{pot}}} \]
\[R_2 \parallel R_1 \]
\[V_1 + IR_2 + V_2 + IR_1 = 0 \]
\[I = -\frac{(V_1 + V_2)}{R_1 + R_2} \]
\[V_x = IR_2 = - (V_1 + V_2) \frac{R_2}{R_1 + R_2} \]

Superposition

\[V_2 = 0 \]

\[V_x = -V_1 \cdot \frac{R_2}{R_1 + R_2} \]
\[I_x = g_m V_x \]
\[R_{th} = \frac{V_x}{I_x} = \frac{1}{g_m} \]

\[\frac{1}{g_m} \]
\[V_1 + V_2 \]

\[I_1 + I_2 \]

\[I_1 \neq I_2 \]
Lecture 7:

* Amplifiers
 * Terminals
 * Signal pins versus power pins
 * Gain
 * Ideal vs. Real
 * Input R / Output R
 * Equivalent circuit
 * Loading
 * Dividers at input / output
 * Effective gain
 * Cascade
 * Dynamic Range
 * Clipping
* Types: CC, VV, CV, VC
 * Most common is voltage/voltage
\[R_L = R_S \]

\[\eta = \frac{P_L}{P_L + P_S} = \frac{I^2 R_L}{I^2 R_S + I^2 R_L} = \frac{R_L}{R_S + R_L} = \frac{R_S}{2R_S} = 50\% \]

\(\Rightarrow \) Maximum power extracted.